

The Evolution to a Virtual Datacenter

What is a virtual data center?

Traditional Data Center	Virtual Data Center			
Designed to Last	Designed to Change			
Tightly Coupled Stack of Project & Application/Infrastructure	Loosely Coupled, Agile and Adaptive			
Manages Physical Resources	Manages Virtual Resources			
Integrate Silos	Compose Data Center Services			
Under utilized & Over-provisioned with Static Workloads	Shared & Pooled with Policy Based Dynamic Workload Mgmt			
Storage Directly Attached	Virtual Storage Grids			
Reactive Problem solving	Proactive: Service Level Management			
Long deployment Cycle	Rapid Deployment Cycle			
Cost centered	Business &delivered as IT Shared Services			

Peering Into the Paradox: How Benefits Become Challenges

Advantages

- Enhances availability
- Improves utilization
- Reduces costs
- Speeds provisioning
- Increases consolidation
- Reduces staffing
- Creates optimism

Disadvantages

- Magnifies failures
- Affects performance
- Encourages sprawl
- Handicaps compliance
- Creates "pods"
- Requires new skills
- Engenders skepticism

Virtual machines help you to recover from your mistakes... but not necessarily in preventing them!

Virtualization Economics: Keeping It Real!

The New Math: V_{cost} = Free One client alluded to it as being "addictive."

The Real Math: $V_{cost} = f$ (Design, Testing,

Administration,
Monitoring, Security,
Compliance,
Optimization)

HP Virtualization Solution Building Blocks

Physical Platform

The HP BladeSystem approach to simplify infrastructure

- Modularize and integrate components
- Surround with intelligence
- Manage as one

- Create logical, abstracted connection to LAN/SAN
- Pool and share server, storage, network, and power
- Simplify routine tasks and processes to save time
- Keep control

Reduce time and cost to buy, build and maintain

Greater resource efficiency and flexibility

Free IT resources for revenue bearing projects

Vmware with HP

HP and VMware Leadership Facts

- HP has the most VMware certified servers: nearly as many as Dell and IBM combined, and twice as many servers certified for VMware ESXi.
 - VMware Systems Compatibility Guide 3 SEP 08
- The DL785 G5 and DL585 G5 have the leading VMmark performance results in their class. The DL785 8-socket ran the largest # of VMs ever on an x86 platform 96, nearly 600 VMs per 42U rack. The DL585 G5 ran 60 VMs to achieve a new record.
 - VMware VMmark results, 4 SEP 08
- HP has more VMware Certified Professionals (VCPs) than anyone except VMware. The exact number is 655 (486 from HP and 169 from EDS). EDS plans to add 330 VCPs in the next 15 months.
 - VMware
- IDC names HP the Global Leader of Thin Clients Worldwide.
 - IDC, Q1 2008 WW Ent. Thin Client Q-View, MAY 08
- HP is the first VMware Authorized Training Center to train more than 10,000 students on VMware certification courses.
 - VMware

Infrastructure Management

Running virtual infrastructure...

Is a physical server infrastructure

How do you optimize...

The HP Insight Software Portfolio

Continuously controlling and optimizing HP platforms

the platform

(dp)

All just by using HP Insight Control

Your total solution to controlling time and your infrastructure

> And save time by using integrated

tools

It's optimizing your infrastructure (virtualization, energy & cooling)

management up Insight Softway Menitor, Protect Protect Control

It's deploying in less time

> Monitoring smarter and faster

Less time worrying about Security

Saving time by administering remotely

Power of HP + VMware

Only HP provides out of box solution

High Availability in failure AND pre-failure conditions

HP Insight Control Management Suite

VMware VirtualCenter

VMM + SIM as part of HP Insight Control Management Suite provides unified physical and virtual server management

- Physical: HP SIM receives
 ProLiant pre-failure hardware alerts
- Virtual: VMM works with VMware VirtualCenter to move VMs BEFORE server failure
- Integrates with VMware
 Distributed Resource Scheduler
 (DRS)
- VMware HA restarts VMs AF
 server failure

HP Virtualisation Manager

Control physical and virtual resources in the same way

New HP Insight Dynamics - VSE: In action

 Logical server: A server profile that is easily created and freely moved across physical and virtual machines

New HP Insight Dynamics - VSE: In action

5-star rating system makes it easy to identify best-fit placement

New HP Insight Dynamics - VSE: In action

 Capacity planning for larger consolidations in hours with Smart Solver technology

ratings Servers are provisioned and redeployed based on best fit algorithms

Moving Workload:

Name	↑ CPU Utilization	Memory Utilization	Network I/O Utilization	Disk I/O Utilization	CPU Multiplier	Memory Multiplier	Forecast Growth Rate CPU Memory Network Disk I/O I/O	Contained In
new_app_serv	er N/A	N/A	N/A	N/A	1.0	1.0	■11 0% / 0% 0% / 0%	Not Assigned/Parked

Note:

The current simulation contains both historical and projected data.

Parked workload utilization values are not relevant until the workload has been moved to a system.

To: (Selected System)

	System Name • workload	Headroom ↓ Rating	CPU Utilization	Memory Utilization	Network I/O Utilization	Disk I/O Utilization	Platform	System Type
•	akroyd01 • akroyd01.fc.hp.com	常等等效效	33.29/38.64 % of 2 Cores @ 2.01 GHz	76.00/80.40 % of 2.00 GB	99.66/103.96 % of 838.86 Mb/s	6.37/9.71 % of 1,638.40 MB/s	Windows® ProLiant DL145 G2	Server, Windows Server, HP ProLiant
0	akroyd05 • akroyd05.fc.hp.com	Y DIDIDIDIC	73.93/76.75 % of 1 Core @ 2.00 GHz	76.48/98.77 % of 1.00 GB	98.82/112.57 % of 837.69 Mb/s	8.09/12.92 % of 1,638.40 MB/s	Windows® ProLiant DL145 G2	Server, Windows Server, HP ProLiant
0	akroyd02 • akroyd02.fc.hp.com	sicicicicie	60.20/66.35 % of 1 Core @ 2.01 GHz	85.85/108.46 % of 1.00 GB	98.21/110.36 % of 838.86 Mb/s	8.40/12.43 % of 1,638.40 MB/s	Windows® ProLiant DL145 G2	Server, Windows Server, HP ProLiant
0	akroyd03 • akroyd03.fc.hp.com	sicicicicie	89.38/92.93 % of 1 Core @ 2.01 GHz	82.88/102.93 % of 1.00 GB	35.15/100.93 % of 837.69 Mb/s	15.05/16.83 % of 1,638.40 MB/s	Windows® ProLiant DL145 G2	Server, Windows Server, HP ProLiant
0	akroyd04 • akroyd04.fc.hp.com	sicicicicic	95.49/99.65 % of 2 Cores @ 2.01 GHz	79.08/89.64 % of 2.00 GB	41.85/101.12 % of 837.69 Mb/s	14.13/17.41 % of 1,638.40 MB/s	Windows® ProLiant DL145 G2	Server, Windows Server, HP ProLiant
0	akroyd06 • akroyd06.fc.hp.com	sicicicic	100.00/110.70 % of 1 Core @ 2.01 GHz	99.17/121.76 % of 1.00 GB	40.15/102.21 % of 837.69 Mb/s	3.30/7.25 % of 1,638.40 MB/s	Windows® ProLiant DL145 G2	Server, Windows Server, HP ProLiant

Note:

The current simulation contains both historical and projected data.

HP Insight Dynamics – VSE: Capacity planning to optimize utilization

The new math: 8+8 = 12

8 Core Peak

8 Core Peak

 Peaks for different workloads do not all happen at the same time.

12 Core Peak

Two workloads each have an 8 CPU peak demand but the peak of their sum is 12 CPUs.

Forecasting utilization is easy

- Enter a growth rate for a workload we will synthesize a trace for it
- Trending analysis will help find the growth rate when there is no business plan

Bring flexibility of virtualization to physical servers

HP Logical Server technology

 A server profile that is easily created and freely moved across physical and virtual machines

Logical servers can be:

- Active physical blade servers
- Active virtual machines
- Offline templates

Unified Infrastructure Management

Operation and management of servers and storage across multiple platforms from a single interface

Eliminate management complexity

HP SIM users see real results

- Server to administrator ratio doubled
- Administration costs declined by 29%
- Downtime reduced 77%

Source: IDC study of HP SIM users, June 2007

Services and Expertise

Virtualization Steps

- Virtualization solution design
- Getting infrastructure ready
- 3. Operation integration
- 4. Service delivery and monitoring
- 5. Maintaining SLA for the service
- 6. Managing server migrations
- 7. Reporting

Virtualization Consulting Services

- Design virtualization solution
- Virtualization Service delivery design
- Operation orchestration process
- Service monitoring and reporting
- Service chargeback design and integration
- Service security design

"HP was one of the first companies to recognize the importance of virtualization and is a leader in this area. The power of HP's virtualization strategy lies with its integrated approach, including hardware, management software and services, to offer a complete and flexible solution."

Vernon Turner
Vice President and General Manager
IDC Group

Technology for better business outcomes

