Why Virtualize Active Directory?

- Hardware Consolidation
- Test and Development
- Security Control
Hardware Consolidation

- Combine multiple, single use boxes
- Standardization – eliminate imaging problems
- Reduce Product Activation issues
Test and Development

- Policy Testing
- Schema Changes
- Migration/Upgrade testing
- Domain reconfigurations
- Deployment testing
- Disaster recovery planning
Security control

- Physical access
- Administrative delegations
- Separate applications from Active Directory databases
Supported Operating Systems

- Windows 2000
- Windows 2003 & R2
- Native Mode or Mixed Mode
Challenges to Virtualizing Active Directory

- Clock synchronization
- Network performance
- Multi-master replication model
- Security
- Potential single point of failure
- Disaster recovery
Clock Synchronization – Why So Important?

- Active Directory operations are critically time dependent
- MS Kerberos implementation allows a 5 minute tolerance
- File Replication Services (FRS) synchronizes scripts, database changes/updates, policies based, in part, on time-stamping
Time Server Hierarchies

- Child PDC emulators can sync with any DC in the parent domain
- Clients sync with any DC in its own domain
- DCs can sync with PDC emulator in its own domain or any DC in parent

Source: Microsoft Corporation
Clock Synchronization – Virtualization Issues

- No CPU cycles needed – none given!
- Clock drifts can be significant in a relatively short period
- Idle cycles in a virtual machine is an Active Directory domain’s worst enemy
- How do you combat time synchronization issues?

More than a 28 minute drift!
Clock Synching – Option A – Using W32Time

- Use Windows Time Service – NOT VMware Tools
- Define an alternative external time source for “master” time server

1. Modify Registry settings on the PDC emulator for the forest root domain:
 HKLM\System\CurrentControlSet\Services\W32Time\Parameters
 • Change Type RED_SZ value from NT5DS to NTP
 • Change NtpServer value from time.windows.com,0x1 to an external stratum 1 time source, i.e. tock.usno.navy.mil,0x1

 HKLM\System\CurrentControlSet\Services\W32Time\Config
 • Change AnnounceFlags REG_DWORD from 10 to 5

2. Stop and restart Time Service – net stop w32time \ net start w32time

3. Manually force update \ w32tm /resync /rediscover
Clock Synching – Option B – Using VMware Tools

- Modify Windows Time Service – Use VMware Tools
 - Implement Domain Controllers Group Policy to modify registry:
 - Enable ESX server NTP daemon to sync with external stratum 1 NTP source
 - VMware Knowledge Base ID# 1339
 - Use VMware Tools Time Synchronization within the virtual machine

NOTE: VMware Tools time sync is designed to play “catch-up”, not slow down!
New Clock Synching – Descheduled Time Accounting

- VMware Tools experimental component
- Custom component for ESX 3.x VMs
- Currently for uniprocessor Windows and Linux VMs
- Improved accuracy for guest OSes CPU time accounting
- Allows quicker “catch-up” of time for guest OS
- Launches a VMDesched thread or process
Clock Synching – Descheduled Time Accounting (2)

- Perform a Custom installation of VMware Tools in Windows guest OS

![Custom Setup of VMware Tools](image)
Transitioning from Physical to Virtual

- Start with a fresh system state backup for recovery
- Consider creating a dedicated virtual switch or virtual machine port group to isolate replication traffic
- Generally single processor virtual machines are adequate for domain controllers
- Create a separate virtual disk for Active Directory database, log files, and SYSVOL
- Validate inbound/outbound connections between physical and virtual machines
- Allow 24-48 hours for replication to complete
- Change the weight and/or priority of the DNS SRV records for virtual machines
- Monitor the logon requests to ensure virtual machines are successfully responding
- Decommission physical domain controllers
Network Connections

Create separate VM port groups connected to individual NICs

Use the Maps view to verify network infrastructure
ESX Server 3.x provides some more sophisticated network settings

![Advanced Switch Settings - Networking](image)

- **General**
 - **Load Balancing**: Route based on the originating virtual port ID
 - **Network Failover Detection**: Link Status only
 - **Notify Switches**: Yes
 - **Rolling Failover**: No

- **NIC Teaming**
 - **Failover Order**: Override vSwitch Failover order
 - Select active and standby adapters for this port group. In a failover situation, standby adapters activate in the order specified below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Speed</th>
<th>Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Adapters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vmnic1</td>
<td>1000</td>
<td>192.168.52.1-192.168.52.254</td>
</tr>
<tr>
<td>vmnic2</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Standby Adapters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unused Adapters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using Replication Monitor

- Validating Inbound Connections
Using Replication Monitor (2)

- Successful Replication

![Active Directory Replication Monitor](image)

- Updated Automatically

- Direct Replication Partner Data

- Server is current through Property Update USN: 16594

- The last replication attempt was successful. This took place at: 9/3/2006 12:37:28 PM (local)
Replication Topology

- Checking Replication Topology

- Look for replication errors

```
Monitored Servers
Default-First-Site-Name
  dc1
    DC=classroom,DC=local
    Default-First-Site-Name\DC2
    CN=Configuration,DC=classroom,DC=local
    Default-First-Site-Name\DC2
    Default-First-Site-Name\CHILD2
    CN=Schema,CN=Configuration,DC=classroom,DC=local
    Default-First-Site-Name\DC2
    Default-First-Site-Name\CHILD2

Path: C:\Documents and Settings\Administrator\My Documents\dc1.CN=Schema,CN=Configuration,DC=
Status as of: 9/3/2006 12:12:07 PM
  >>> Direct Replication Partner Data <<<
  Server is current through Property Update USN: 5545
  Replication Failure: Changes have not been successfully replicated from DC1 for 1 attempt(s).
  Replication Failure: The reason is: There are no more endpoints available from the endpoint map
  Replication Failure: The last replication attempt was: 9/3/2006 11:48:42 AM (local)
```
DNS Modifications

- Modify the weight and/or priority of the DNS SRV records
- Specifically offload the authentication requests from the PDC emulator when possible
- DNS **weight** is the proportional distribution of requests among DNS servers
- DNS **priority** is the likelihood a server will receive a request
- PDC emulators should have one or both adjusted accordingly by adding:
 - HKLM\System\CurrentControlSet\Services\Netlogon\Parameters
 - *LdapSrvWeight* DWORD decimal value of 25 or 50
 - HKLM\System\CurrentControlSet\Services\Netlogon\Parameters
 - *LdapSrvPriority* DWORD decimal value to 100 or 200
- Physical domain controllers should be adjusted similarly to PDC emulator to decrease DNS dependencies on them
DNS Modifications

- Can also be changed within DNS manager
- Registry changes do not require a reboot
Disaster Recovery

- Perform consistent system state backups
 - Eliminates hardware incapability when performing restore
- Follow Microsoft recommendations on FSMO role placement
 - http://support.microsoft.com/kb/223346
- All Active Directory restorations should be performed using authoritative and non-authoritative technique
 - Do not recover an Active Directory database from a backup copy of an old virtual disk!
Disaster Recovery Scenarios

Improper Restore of VM

VDC1 View of Self

USN=1000, InvocationID=A

VDC1 fails and old image is brought online

USN=500, InvocationID=A

Changes occur on VDC1

USN=600, InvocationID=A

DC2 View of VDC1

VDC1(A)@USN1000

Proper Restore of VM

VDC1 View of Self

USN=1000, InvocationID=A

VDC1 fails and is properly restored

USN=500, InvocationID=B

Changes occur on VDC1

USN=600, InvocationID=B

DC2 View of VDC1

VDC1(A)@USN1000

VDC1(B)@USN500

Source: Microsoft Corporation
Disaster Preparedness – ESX 3.x/VirtualCenter 2.x

- VMware provides solutions for automatically restarting virtual machines
- Implement VMware HA as a high availability to ensure virtual machine domain controllers restart in the event an ESX server fails
Disaster Preparedness – ESX 3.x/VirtualCenter 2.x

- Combined with VMware DRS Anti-affinity rules can ensure domain controller VMs are segregated.
Additional Information

- VMware Time Sync and Windows Time Service
 - VMware Knowledge Base ID# 1318
- Installing and Configuring NTP on VMware ESX Server
 - VMware Knowledge Base ID# 1339
- VMware Descheduled Time Accounting
- How to detect and recover from a USN rollback in Windows Server 2003
 - http://support.microsoft.com/kb/875495
- How to detect and recover from a USN rollback in Windows 2000 Server
 - http://support.microsoft.com/kb/885875
- Support policy for Microsoft software running in non-Microsoft hardware virtualization software
 - http://support.microsoft.com/kb/897615
- How to configure an authoritative time server in Windows Server 2003
 - http://support.microsoft.com/kb/816042
Best Practices

- Avoid snapshots or REDOs for domain controller virtual machines
- Do not suspend domain controller virtual machines for long periods
- Consistent and regular system state backups still very important
Summary

- System State backups regularly
- Time Synchronization
- Disaster Recovery Plan
- High Availability
- Monitor Replication Traffic
- Modify DNS SRV records to redirect log on authentications to VMs
- Go back and constantly re-evaluate your strategy!!!
Thank you!!
Questions?