VI3 Networking Scenarios and Troubleshooting

Krishna Raj Raja VMware

Why This Talk ?

- A vast majority of networking problems are configuration issues with the physical switch
- Physical switches are managed by network administrators. Virtual switches are under the control of ESX administrators
- Enabling/disabling various networking features can have subtle or drastic implications on your network connectivity
- Knowledge on how virtual switch works helps to troubleshoot problems

Outline

- ESX Networking details
- Scenarios
 - > Virtual Switch boundaries
 - > VLAN
 - Layer 2 Security
 - Load Balancing
 - Failover
- Diagnostics
- This talk assumes familiarity with ESX networking features

ESX Networking: Logical Layout

- Multiple layers, multiple ways to interconnect
- Interesting possibilities !

ESX 3.x Networking Details 1:VI traffic to COS 2:VM traffic 3:VI traffic for Remote Console Service Console VM 4: IP storage user user 5: VMotion traffic kernel kernel TCP/IP stack TCP/IP stack netcos driver vlance / vmxnet / e1000 VMX SCSI emulation Net Device emulation vmnixmod VMKernel uses its own TCP/IP stack 3 2 1 4 E Shared E \equiv Shared \equiv VMKernel IP Storage MKS VMotion Clients inherit the cos **BSD TCP/IP stack** properties of portgroup Shadow vmxnet Vlance client **TCP/IP** client client client Portgroup policies define what features are used Portgroup VLAN Ethernet Load Failover New functionalities could be Balancing Switching Tagging plugged Virtual Switch All network traffic has to go vmklinux compatibility layer through some virtual switch Linux device drivers VMKernel uses modified Linux drivers

All the Physical NICs are managed by VMkernel

Virtual Switch

- Operates at Layer 2, no layer 3 functionalities.
- Can have zero or more uplinks (Physical NICs)
- Cannot share (uplinks) physical NICs with other virtual switches
- To use a virtual switch there should be at least one portgroup defined

Portgroups

- Portgroups do not segment broadcast domain
 - VLANs segment broadcast domains
- Clients inherit the properties of the portgroups (in ESX 2.x properties are specified to the virtual NIC)
- Portgroup policies Overrides virtual switch policies.
- Can use subset of NICs available to the virtual switch
- Can share NICs with other portgroups on the same virtual switch
- Implication: Same set of Physical NICs can be used with different policy settings. For ex. VLAN, NIC teaming etc.

Virtual Switch: External View

- Virtual Switch behaves like a dumb switch
- Does not speak
 - STP Don't have to, No Loops possible
- Does not speak DTP, VTP, ISL etc
- Does not speak LACP
 - Physical Switch ports have to be aggregated in Manual mode
- Optional CDP support planned for the future version

Virtual Switch: Internal View

- MAC address learning
 - Unlike physical switches Virtual Switch does not learn MAC addresses from the traffic flow
 - Virtual NICs notify MAC address when they register
 - Every other unicast MAC address belong to uplink port
- Link negotiation
 - > Virtual NIC does not negotiates speed/duplex with the virtual switch
 - Virtual NICs do not reflect the speed/duplex state of the Uplink (physical NIC)
 - Guest reports link down status when the virtual ethernet device is disconnected in the UI

Virtual Switch Boundaries

- Virtual switches are isolated. i.e. Trunking is not possible between virtual switches. Only uplinks connect virtual switches.
- Communication from VM A to VM B can happen only through external network

Virtual Switch Boundaries

- Virtual Machines can interconnect Virtual Switch
- Virtual NICs need to be placed in different subnet to use both virtual switches
- Layer 2 Loops possible if the VM acts like a bridge

Virtual Switch Boundaries

- VMKernel TCP/IP Stack routing table determines packet flow
- Put IP Storage and VMotion on separate subnets for isolation
- Traffic will go through the same virtual switch if they are in the same subnet

VLAN: Why Trunk ?

- Uplink in a virtual switch is a trunk link to the physical switch
- Configure the physical switch port as a trunk port to allow traffic with tagged frames

Native VLAN

- Physical Switch does not tag frames on the Native VLAN
- Virtual Switch does not have the notion of Native VLAN
- Communication A B fails: Virtual switch forwards only tagged frames to B
- Communication B A may or may not fail: Physical switch may or may not accept tagged frames on native VLAN
- Workaround: Put VM B on an portgroup with no VLAN tagging or enforce tagging on switch port P2

Virtual Switch VLAN Behavior Example

- Loopback cable interconnects VLAN 5 and VLAN 10 into the same broadcast domain
- VM A and VM B can talk to each other
- In ESX 2.x the response packets from VM B will not reach VM A. Path optimization prevents this communication
- ESX 3.x avoids this problem

VGT: Security Implications

- VLAN id 4095 enables VGT mode in ESX 3.x
- In VGT mode guest can send/receive any VLAN tagged frame (0-4094).
- Virtual switch does not filters VLAN
- Filtering could be done in the physical switch port
- However VM B could still talk to VM A

Layer 2 Security

Policy Exceptions			
Promiscuous Mode:	Accept	-	
MAC Address Changes:	Accept	v	
Forged Transmits:	Accept	¥	

- ESX Layer 2 security options give a level of control beyond what is usually possible in physical environments
- Promiscuous Mode: Deny
 - Virtual NIC will appear to go into promiscuous mode, but it won't receive any additional frames
- Forged transmits: Deny
 - drop any frames which the guest sends with a source MAC different from the one currently registered
- MAC address changes: Deny
 - if the guest attempts to change the MAC address to something other than what's configured for the virtual HW, stop giving it frames

Layer 2 Security

- Why "Deny MAC Address Changes" ?
 - Suest can change its MAC address to send spoofed frames
 - Guest can change its MAC address to listen to other traffic when promiscuous mode is denied.
- To restrict the VM to use only its MAC address enforce "Deny MAC Address Changes" and "Deny Disallow Forged transmits"
- Deny all three options for complete layer 2 security

Layer 2 Security: Interactions

- Microsoft Network Load Balancing
 - Deny Forged transmits will break Microsoft Network Load Balancing operating in Unicast mode
 - In Unicast mode Cluster nodes use fake MAC address for outgoing traffic to prevent switches from learning true MAC address. This technique allows the incoming traffic for the cluster IP to be sent to all the ports of the physical switch.

Layer 2 Security: Interactions

- Windows IP address conflicts
 - Deny Forged transmits will cause machines on the network to point to the offending machine instead of defending machine in the case of IP address conflict
 - Windows Sends gratuitous ARP (ARP request for its own IP) to detect duplicate IP address. If a host responds back, then duplicate IP
 - In the event a host responds back (duplicate IP found), windows sends forged ARP request containing the MAC address of the defending machine. This updates the ARP table of the machines in the network with the IP address of the defending machine.

Switch Notification

Policy Excep	tions						
Load Balancing: Network Failover Detection:		Route based o	on the originating virtual port ID				
		Link Status on	Link Status only				
Notify Switc	hes:	■ Yes	Yes				
Rolling Failo	ver:	■ No	No				
Select active	vSwitch failover ord and standby adapt	ler: ers for this port group. In a vate in the order specified					
	Speed	Networks	Move Up				
Name	apters						

 Client MAC address is notified to the physical switch using RARP frame

When ?

- > Whenever Client register itself with virtual switch
- VM power on, Vmotion, Changing MAC, Teaming status change etc
- Why ?
 - Allows the physical switch to learn MAC immediately
- Why RARP ?:
 - L2 broadcast reaches every switch
 - Doesn't disrupts ARP cache
 - L3 information not needed to send RARP

Switch Notification: VMotion

- VMotion moves the VM from one switch port to another
- Virtual Switches on source and destination should have identical L2 security policy (VC Checks this)
- Source and destination port should be in the same broadcast domain (implies same VLAN).
- Virtual NIC is unplugged on the source and plugged back at the destination host – triggers switch notification

Load Balancing: Source MAC/Originating Port ID

- Outbound NIC is chosen based on source MAC or originating port id
- Client traffic is consistently sent to the same physical NIC until there is a failover
- Replies are received on the same NIC as the physical switch learns the MAC/ switch port association
- Better scaling if: no of vNICs
 > no of pNICs
- VM cannot use more than one Physical NIC unless it has two or more virtual NICs

Load Balancing: IP Hash (out-IP)

- Outbound NIC is chosen based on "Source-destination L3 address pair"
- Scalability is dependent on the no of TCP/IP sessions to unique destinations. No benefit for bulk transfer between hosts
- Physical switch will see the client MAC on multiple ports
 - Can disrupt MAC address learning on the physical switch
 - Inbound traffic is unpredictable.

NIC Teaming: Packet Reflections

- Broadcast / Multicast packets return to the VM through other NICs in the team
- Most Guest OS'es ignore duplicate packets
- Avoid NIC Teaming if the VM relies on frequent broadcast / multicast packets (for ex. Microsoft Network Load Balancing)
- ESX 3.x filters packet reflections
 - Frames received on wrong link is
 - Discarded in source mac/originating port id mode
 - Allowed in out-ip mode

Link Aggregation

Allows load balancing of incoming traffic.

- Packet reflections are prevented -Aggregated ports do not re-send broadcast / multicast traffic
- Works well with out-ip since aggregated ports share a single entry in the MAC lookup table
- Throughput aggregation benefits are less relevant with the advent of gigabit and 10G Links
- Traffic flow is unpredictable
- Source mac/Source port id mode load is incompatible with Link aggregation in ESX 3.x

Physical Switch

NIC Teaming: Multi Switch Configuration

- Physical NICs can be connected to different switches as long as they remain in the same broadcast domain
- Physical switches should be trunked or ISL'ed
- Expect problems if the port on each physical switch is configured with different VLAN/trunking options
- IP-hash (out-ip) mode is not recommended
 - Client MAC address can appear on all the physical switches
 - Client MAC address can appear on trunk ports

NIC Teaming: Multi Switch With Link Aggregation

- Same scenario as before, but uses link aggregation on each switch
- Currently ports from different physical switches could not be aggregated into a single link

NIC Teaming: Failover Scenarios

Policy Excep	dons			
Load Balanci	ng:		Route based on the originating vir	tual port ID
Network Fail	over Detection:		Link Status only	
Notify Switch	hes:	Γ	Yes	
Rolling Failov	/er:		No	
	vSwitch failover ord		port group. In a failouer	
Override Select active situation, sta	vSwitch failover orc and standby adapt andby adapters acti	ers for this vate in the	port group. In a failover order specified below.	
Override Select active	vSwitch failover ord and standby adapt andby adapters activ	ers for this vate in the		Move Up

- Failover detection
 - Ethernet Link failure
 - Switch failure (beaconing)
- Fail-back
 - Rolling failover : No Fail back is on
- Failover order
 - > Order of Standby Adapters
- Unused Adapters NICs excluded from teaming
- Changing the Order of Active Adapters switches the traffic flow through the NICs

NIC Teaming: Failover Implications

- Fail-back is on by default. If link is flaky physical switch will notice client MAC address on multiple ports frequently
- Virtual switch uses the link as soon as it is up. Physical switch port may not accept traffic immediately when the link comes online
- To minimize delays disable
 - STP (use portfast mode instead) 30 secs
 - Etherchannel negotiation, like PAgP (use manual mode) 15 secs
 - Trunking negotiation 4 secs
 - Link autonegotiation (Speed/duplex settings) 2 secs

Diagnostics: Link state

•	root@mo	jave:~					
$ \ge $	[root@mo	ojave root	t]# esxcfg-	nics -l			
-11	Name	Р СІ	Driver -	Link	Speed	Duplex	Description
11	vmnic1	03:0d.00	e1000	Up	1000Mbps	Full	Intel Corporation PRO/1000 MT Server Adapter
-11	vmnic0	04:0b.00	3c90x	Up	100Mbps	<u>Full</u>	3Com Corporation 3c905C-TX/TX-M [Tornado]
		04:0e.00		Down	OMbps	Half)	Intel Corporation EtherExpress PRO/100 S Desktop Adapter
11	[root@mo	ojave root	t]#				
$\overline{\nabla}$		-					

Hardware	Network Adapte	rs			
P	Device	Speed	Configured	vSwitch	Networks
Processors	PRO/1000 MT 56	erver Adapter			
Memory	vmnic1	1000 Full	Negotiate	vSwitch1	
Storage (SCSI, SAN, and NFS)	3c905C-TX/TX-N	1 [Tornado]			
Networking	😨 vmnic0	100 Full	Negotiate	vSwitch0	10.17.213.1-10.17.213.25
Storage Adapters	EtherExpress PR	0/100 S Deskto	p Adapter		
 Network Adapters 	🤹 vmnic2	down	Negotiate	None	

Diagnostics: Portgroup settings

 root@mojave:~ 				
△[root@mojave root]# es Switch Name Num Por vSwitch0 32			ured Ports	Uplinks vmnic0
PortGroup Name NFS Service Console	portgroup6		Used Ports 1 1	Uplinks vmnic0 vmnic0
Switch Name Num Por vSwitch1 64	rts Used Ports 3	Configu 64	ured Ports	Uplinks vmnic1
PortGroup Name VMkernel	Internal ID portgroup3		Used Ports 1	Uplinks vmnic1
🕇 [root@mojave root]# 📕				

Hardware	Networking						
Processors							
Memory	Virtual Switch: vSwitch0						
Storage (SCSI, SAN, and NFS)	Service Console Port						
Networking	Service Console vswif0 : 10,17,213,182						
Storage Adapters							
Network Adapters	Virtual Switch: vSwitch1						
	VMkernel Port						
Software	VMkernel 2.0.50						

Diagnostics: VMKernel TCP/IP Stats

> cat /proc/vmware/net/tcpip/ifconfig

Usag Usag	e: pľumb <port e: unplumb <po< th=""><th>‡ cat /proc/vmwar tSetName> <ipaddr ortSetName> atewayAddress></ipaddr </th><th></th><th>config</th><th></th><th></th><th></th><th></th><th></th></po<></port 	‡ cat /proc/vmwar tSetName> <ipaddr ortSetName> atewayAddress></ipaddr 		config					
Mame vmk0 vmk3	portgroup3	Address 10.2.0.50 10.17.213.197	Netmask 255.255.0.0 255.255.255.	.0					
Name 1o0 1o0 vmk0 vmk0 vmk3 vmk3	1500 /0	<link#1> 127 1 <link#2> 00: 10.2/16 1 <link#3> 00:</link#3></link#2></link#1>	dress 27.0.0.1 50:56:6e:49:2b 0.2.0.50 50:56:65:d5:21 0.17.213.197	Ipkts Ie 0 516985 516985 1456953 1456953	rrs 0 0 0 0 0	Ibytes 0 0 419117210 419117210 187423828 187423828	Opkts Der 0 470879 470879 829133 829133	rrs Obytes Co 0 0 0 421234014 0 421234014 0 421234014 0 1873803352 0 1873803352	011 Time 0 0 0 0 0 0 0 0 0 0 0 0
rout Rout	0 bad rout 0 dynamica 0 new gate 56 destina	ting redirects ally created rout eways due to redi ations found unre a wildcard route	rects achable						
Dest defa 10.2 10.1 127.		Gateway 10.17.213.253 link#2 link#3 127.0.0.1 #	Flags F UGc UC UC UH	Ō		tif Expin Vmk3 Vmk0 Vmk3 100	re		

Diagnostics: vmkping

[root@mojave tcpip]# vmkping -D -v

portgroup3: inet addr: 10.2.0.50 netmask: 255.255.0.0 MTU: 1514 HWaddr: 00:5 0:56:6e:49:2b PING 10.2.0.50 (10.2.0.50): 56 data bytes 64 bytes from 10.2.0.50: icmp_seq=0 ttl=64 time=0.096 ms 64 bytes from 10.2.0.50: icmp_seq=1 ttl=64 time=0.104 ms 64 bytes from 10.2.0.50: icmp_seq=2 ttl=64 time=0.117 ms

--- 10.2.0.50 ping statistics ---3 packets transmitted, 3 packets received, 0% packet loss round-trip min/avg/max = 0.096/0.106/0.117 ms

portgroup6: inet addr: 10.17.213.197 netmask: 255.255.255.0 MTU: 1514 HWaddr : 00:50:56:65:d5:21 PING 10.17.213.197 (10.17.213.197): 56 data bytes 64 bytes from 10.17.213.197: icmp_seq=0 ttl=64 time=0.080 ms 64 bytes from 10.17.213.197: icmp_seq=1 ttl=64 time=0.118 ms 64 bytes from 10.17.213.197: icmp_seq=2 ttl=64 time=0.109 ms

--- 10.17.213.197 ping statistics ---3 packets transmitted, 3 packets received, 0% packet loss round-trip min/avg/max = 0.080/0.102/0.118 ms

Trying to ping gateway: 10.17.213.253 PING 10.17.213.253 (10.17.213.253): 56 data bytes 64 bytes from 10.17.213.253: icmp_seq=0 ttl=128 time=0.502 ms 64 bytes from 10.17.213.253: icmp_seq=1 ttl=128 time=0.482 ms 64 bytes from 10.17.213.253: icmp_seq=2 ttl=128 time=0.484 ms

--- 10.17.213.253 ping statistics ---3 packets transmitted, 3 packets received, 0% packet loss round-trip min/avg/max = 0.482/0.489/0.502 ms

Trying to ping NAS mount: vmfs_mount server: pa-vmlib.eng.vmware.com addr: 1 0.17.4.26 share: /vmlibperf/users/anne/vmfs_mount PING pa-vmlib.eng.vmware.com (10.17.4.26): 56 data bytes 64 bytes from 10.17.4.26: icmp_seq=0 ttl=254 time=1.044 ms 64 bytes from 10.17.4.26: icmp_seq=1 ttl=254 time=1.612 ms 64 bytes from 10.17.4.26: icmp_seq=2 ttl=254 time=0.993 ms

--- pa-vmlib.eng.vmware.com ping statistics ---3 packets transmitted, 3 packets received, 0% packet loss round-trip min/avg/max = 0.993/1.216/1.612 ms

- ping command uses service console TCP/IP Stack
- vmkping uses VMKernel TCP/IP stack

Diagnostics: Collecting Network Traces

- Run tcpdump/ethereal/netmon inside the guest or in the service console
- Traffic visibility depends on the portgroup policy settings
 - Portgroup with VLAN id 0 (No VLAN)
 - Sees all the traffic on the virtual switch without VLAN tags
 - Portgroup with VLAN id 'X' (1-4094)
 - Sees all the traffic on the virtual switch with VLAN id 'X'
 - Portgroup with VLAN id 4095
 - Sees all traffic on the virtual switch
 - Traffic is captured with VLAN tags
 - > Promiscuous mode
 - Accept: All visible traffic
 - Reject: Only traffic matching the client MAC address

Questions ?

Presentation Download

Please remember to complete your session evaluation form

and return it to the room monitors as you exit the session

The presentation for this session can be downloaded at http://www.vmware.com/vmtn/vmworld/sessions/

Enter the following to download (case-sensitive):

Username: cbv_rep Password: cbvfor9v9r

Some or all of the features in this document may be representative of feature areas under development. Feature commitments must not be included in contracts, purchase orders, or sales agreements of any kind. Technical feasibility and market demand will affect final delivery.

