Migrating Server Operations from Remote Sites to the Datacenter for Disaster Recovery and Protection

Angelo Armenteros – Director of Network Systems
Eddy Caballero – Storage Analyst
Greenberg Traurig
Agenda

- Introduction
- Company Profile
- DR Challenges
- Previous DR environment
- Design Goals
- Implementation
- Implementation Issues
- Conclusions
- Q & A
Company Profile

- Greenberg Traurig

- International Law Firm – 29 offices in US, Europe, Asia
- 100+ Practice areas: Appellate, Aviation, Corporate, Entertainment, Environmental, Governmental, Healthcare, Intellectual Property, Labor, Litigation, Real Estate, Securities, Tax, T&E, etc.
- 1500+ attorneys, 3500+ employees
- Ranked No. 1 in the U.S. for 5-year growth leaders in The National Law Journal Millennium NLJ 250 annual survey of the nation's 250 largest law firms
- Ranked No. 7 on The American Lawyer's 2006 Am Law 100 listing of the largest law firms in the U.S., based on number of lawyers
DR Challenges

- Design constraints
 - Highly distributed environment
 - Many remote offices
 - Each office designed to operate independently
 - Two data centers
 - Wide variety of WAN links
 - T1’s to 100Mb
 - Mixture of transactional and non-transactional data
 - MS SQL
 - MS Exchange
 - Windows based file servers
 - Domain controllers
 - Other miscellaneous servers
Previous DR Environment

- Software (host-based) replication + VMware ESX

Issues:

- Required loading software into each guest OS
 - Consumed guest resources
 - Potential conflicts with other software
 - Backup agents, anti-virus, and other modules
- Could not easily replicate entire guest as a bootable image
- Excessive re-mirror events
 - Certain conditions required replicated data to be re-synced
- Fail-over / Fail-back required extensive tinkering with replicated guest
 - Machine names, DNS registrations, IP addresses and more
- Fail-over requires “standby” host (physical or virtual)
- Limitations of source-target configurations
 - One-to-one vs. many-to-one
Design Goals

- Quick fail-over / fail-back
- Transparent fail-over / fail-back
 - No changes required to replicated servers
 - No changes required to client devices
- Replicate each server as a bootable unit
 - Fast “cold migrate” functionality
- Storage-level replication
 - No OS involvement
- Leverage capabilities provided by VMware
 - Data encapsulation
 - Hardware abstraction
- Transactionally consistent data (vs. crash-consistent)
 - Especially important for MS Exchange and MS SQL
Implementation

- Platform Components:
 - VMware ESX 2.5.x / VC 1.x
 - Storage, virtualization, management and replication
 - IPStor 5.x from FalconStor
 - SCSI or FC (SAN) shared storage array
- Networking
 - Layer 3 routing switches at each network core
- Scripting and integration
 - Tcl/Tk and Expect for scripting and integration
- Remote access
 - Citrix Presentation Server 4
 - MS Outlook Web Access
Implementation

- VMware ESX 2.x / VC 1.x
- Each remote office has full complement of servers required to work independently
 - DC, SQL, Exchange, file server, print server, document management, web proxy, SMS and other miscellaneous servers
 - Typical deployment is around 10 – 12 virtual servers per site
 - 2 – 5 physical ESX hosts per site
- Not all servers required for DR
 - Only SQL, Exchange, file server and DMS related are critical
Implementation

- Storage
- Fiber Channel SAN or SCSI-based shared storage
- FalconStor IPStor
 - Storage presentation
 - Storage virtualization
 - Snapshots / Mirroring
 - Replication
- Replication
- CDP vs. Snapshots
- RPO vs. Transactional consistency
Implementation

- Storage Virtualization
 - Provide consistent storage presentation and management regardless of underlying storage type
 - SCSI, SATA, SAN, etc.
- Easily migrate between physical storage systems
- Add functionality to existing storage
 - Snapshots / Cloning
 - Replication / Mirroring
 - Synchronous
 - Asynchronous
 - Continuous
 - Periodic
Implementation

- **RDM vs. VMFS**
 - RDMs are more difficult to manage, but….
 - Much more practical in SAN environment where snapshots are used

- **VMFS**
 - Snaps on VMFS track I/O for all VMDKs, not just the one desired for the snap
 - Snaps can only be presented back to ESX hosts

- **RDM**
 - Snaps of RDMs only track I/O for one specific LUN/volume/drive
 - Snap can be presented to ESX or to a physical host

- **ESX needs better RDM management**
 - Need method to globally ID, track and manage an RDM independent of ESX host it was created on
Networking
Layer 4 Routing switch at network core
Each office subnetted into multiple subnets / VLANs
All servers on single, dedicated subnet / VLAN
Dynamic routing protocol (RIP v2)
VLAN / subnet transportable throughout network

Example:
- 10.1.1.x – Servers
- 10.1.2.x – Printers
- 10.1.3.x – User 1
- 10.1.4.x – User 2
-
Implementation

Scripting and Integration

- Used to facilitate talking to a number of dissimilar systems
 - ESX server
 - IPStor
 - Routing switches
- Tk/Tk with Expect
 - Easiest method to automate CLI interfaces
Implementation

- System Access after fail-over
- LAN/WAN access
 - No changes needed to existing systems
 - All failed-over servers have same names and IP addresses
 - Only change was network route

- Remote Access
 - Citrix Secure Gateway
 - Citrix Presentation Server 4
 - MS Outlook web access
 - Limited VPN access
Implementation

Failover process
- Shutdown source VMs
- Shutdown source ESX servers
- Flush any pending replication data
- Shutdown source router VLAN interface

(Planned)

(Planned or Unplanned)

- Activate target router VLAN interface
- Present replicated data to fail-over ESX hosts
- Perform any VM guest setting adjustments needed
 - RDM presentation, VMX tweaks, etc…
- Boot DR VM guest OS
Implementation Issues

- Replication
 - Know your data change rates
 - Identify and separate critical vs. non-critical data
 - WAN capacity
 - WAN latency
 - Data compressibility

- Storage capacity and I/O bandwidth
 - Space for snapshots and replicated data
 - Snapshots and/or CDP require extra I/O bandwidth
 - In fail-over mode, extra storage capacity needed (potentially) for efficient fail-back
 - Use RDM’s to isolate snapshot I/O
Implementation Issues

Effect of Latency on Bandwidth

Bandwidth (Mb/s) vs. Latency (ms) for different window sizes:

- 32K Window
- 64K Window
- 256K Window

VMWORLD 2006
Conclusions

- Storage virtualization together with VMware greatly facilitates DR replication and fail-over
- Storage level replication solves many replication issues
 - No resource utilization on replicated server
 - Replication not affected by server OS issues
 - Except (nothing is perfect!)
 - Disk defragmentation
 - Easy file/folder exclusion
- Entire subnet fail-over eliminates need to change server and client device settings
 - Single server can be failed-over with a little more effort
Conclusions

- Uses:
 - DR
 - Remote office maintenance
 - Upgrades
 - Office moves
 - Testing
Please remember to complete your **session evaluation form** and return it to the room monitors as you exit the session.

The presentation for this session can be downloaded at http://www.vmware.com/vmtn/vmworld/sessions/

Enter the following to download (case-sensitive):

- **Username**: cbv_rep
- **Password**: cbvfor9v9r