Migrating Server Operations from Remote Sites to the Datacenter for Disaster Recovery and Protection

Angelo Armenteros – Director of Network Systems

Eddy Caballero – Storage Analyst

Greenberg Traurig

Agenda

- Introduction
- Company Profile
- DR Challenges
- Previous DR environment
- Design Goals
- Implementation
- Implementation Issues

- Conclusions
- Q & A

Company Profile

Greenberg Traurig

- International Law Firm 29 offices in US, Europe, Asia
- 100+ Practice areas: Appellate, Aviation, Corporate, Entertainment, Environmental, Governmental, Healthcare, Intellectual Property, Labor, Litigation, Real Estate, Securities, Tax, T&E, etc....
- 1500+ attorneys, 3500+ employees
- Ranked No. 1 in the U.S. for 5-year growth leaders in The National Law Journal Millennium NLJ 250 annual survey of the nation's 250 largest law firms
- Ranked No. 7 on The American Lawyer's 2006 Am Law 100 listing of the largest law firms in the U.S., based on number of lawyers

DR Challenges

- Design constraints
 - > Highly distributed environment
 - Many remote offices
 - Each office designed to operate independently
 - > Two data centers
 - > Wide variety of WAN links
 - T1's to 100Mb
 - Mixture of transactional and non-transactional data
 - MS SQL
 - MS Exchange
 - Windows based file servers
 - Domain controllers
 - Other miscellaneous servers

Previous DR Environment

Software (host-based) replication + VMware ESX

Issues:

- Required loading software into each guest OS
 - Consumed guest resources
 - Potential conflicts with other software
 - Backup agents, anti-virus, and other modules

- Could not easily replicate entire guest as a bootable image
- Excessive re-mirror events
 - Certain conditions required replicated data to be re-synced
- Fail-over / Fail-back required extensive tinkering with replicated guest
 - Machine names, DNS registrations, IP addresses and more
- Fail-over requires "standby" host (physical or virtual)
- Limitations of source-target configurations
 - One-to-one vs. many-to-one

Design Goals

- Quick fail-over / fail-back
- Transparent fail-over / fail-back
 - No changes required to replicated servers
 - No changes required to client devices
- Replicate each server as a bootable unit
 - Fast "cold migrate" functionality
- Storage-level replication
 - No OS involvement
- Leverage capabilities provided by VMware
 - Data encapsulation
 - Hardware abstraction
- Transactionally consistent data (vs. crash-consistent)
 - Especially important for MS Exchange and MS SQL

- Platform Components:
- VMware ESX 2.5.x / VC 1.x
- Storage, virtualization, management and replication
 - IPStor 5.x from FalconStor
 - SCSI or FC (SAN) shared storage array
- Networking
 - Layer 3 routing switches at each network core
- Scripting and integration
 - Tcl/Tk and Expect for scripting and integration
- Remote access
 - > Citrix Presentation Server 4
 - > MS Outlook Web Access

- VMware ESX 2.x / VC 1.x
- Each remote office has full complement of servers required to work independently
 - DC, SQL, Exchange, file server, print server, document management, web proxy, SMS and other miscellaneous servers
 - Typical deployment is around 10 12 virtual servers per site
 - 2 5 physical ESX hosts per site
- Not all servers required for DR
 - Only SQL, Exchange, file server and DMS related are critical

- Storage
- Fiber Channel SAN or SCSIbased shared storage
- FalconStor IPStor
 - Storage presentation
 - Storage virtualization
 - Snapshots / Mirroring
 - Replication
- Replication
- CDP vs. Snapshots
- RPO vs. Transactional consistency

- Storage Virtualization
- Provide consistent storage presentation and management regardless of underlying storage type
 - SCSI, SATA, SAN, etc.
- Easily migrate between physical storage systems
- Add functionality to existing storage
 - Snapshots / Cloning
 - Replication / Mirroring
 - Synchronous
 - Asynchronous
 - Continuous
 - Periodic

- RDM vs. VMFS
- RDMs are more difficult to manage, but....
 - Much more practical in SAN environment where snapshots are used

VMFS

- Snaps on VMFS track I/O for all VMDKs, not just the one desired for the snap
- Snaps can only be presented back to ESX hosts

RDM

- Snaps of RDMs only track I/O for one specific LUN/volume/drive
- Snap can be presented to ESX or to a physical host
- ESX needs better RDM management
 - Need method to globally ID, track and manage an RDM independent of ESX host it was created on

- Networking
- Layer 4 Routing switch at network core
- Each office subnetted into multiple subnets / VLANs
- All servers on single, dedicated subnet / VLAN
- Dynamic routing protocol (RIP v2)
- VLAN / subnet transportable throughout network

Example:

- > 10.1.1.x Servers
- 10.1.2.x Printers
- 10.1.3.x User 1
- > 10.1.4.x User 2

- Scripting and Integration
 - Used to facilitate talking to a number of dissimilar systems
 - ESX server
 - IPStor
 - Routing switches
 - Tck/Tk with Expect
 - Easiest method to automate CLI interfaces

- System Access after fail-over
- LAN/WAN access
 - No changes needed to existing systems
 - > All failed-over servers have same names and IP addresses
 - Only change was network route
- Remote Access
 - > Citrix Secure Gateway
 - > Citrix Presentation Server 4
 - > MS Outlook web access
 - Limited VPN access

Failover process

- Shutdown source VMs
- Shutdown source ESX servers
- Flush any pending replication data
- Shutdown source router VLAN interface

(Planned)

(Planned or Unplanned)

- Activate target router VLAN interface
- Present replicated data to fail-over ESX hosts
- Perform any VM guest setting adjustments needed
 - > RDM presentation, VMX tweaks, etc...
- Boot DR VM guest OS

Implementation Issues

- Replication
 - Know your data change rates
 - Identify and separate critical vs. non-critical data
 - > WAN capacity
 - > WAN latency
 - Data compressibility
- Storage capacity and I/O bandwidth
 - Space for snapshots and replicated data
 - Snapshots and/or CDP require extra I/O bandwidth
 - In fail-over mode, extra storage capacity needed (potentially) for efficient fail-back
 - > Use RDM's to isolate snapshot I/O

Implementation Issues

Effect of Latency on Bandwidth

Conclusions

- Storage virtualization together with VMware greatly facilitates DR replication and fail-over
- Storage level replication solves many replication issues
 - No resource utilization on replicated server
 - Replication not affected by server OS issues
 - Except (nothing is perfect!)
 - Disk defragmentation
 - Easy file/folder exclusion
- Entire subnet fail-over eliminates need to change server and client device settings
 - Single server can be failed-over with a little more effort

Conclusions

- Uses:
 - > DR
 - Remote office maintenance
 - > Upgrades
 - > Office moves
 - > Testing

Q & A

Presentation Download

Please remember to complete your session evaluation form

and return it to the room monitors as you exit the session

The presentation for this session can be downloaded at http://www.vmware.com/vmtn/vmworld/sessions/

Enter the following to download (case-sensitive):

Username: cbv_rep Password: cbvfor9v9r

