VMware ESX Server as a foundation for HA and DR for the Microsoft Server Platform

Rick Magoon
Senior Solutions Architect, EMC
Microsoft Practice
Agenda

- Definitions and Acronyms
- Introduction
- HA Layers
 - Server Hardware
 - SAN Hardware
 - Network Backbone
 - VMware Virtual Layer (HA, DRS, VMotion)
 - Applications within Windows Guest OS
- DR Layers
 - VMware Virtual Layer (VCB, snapshots, clones, templates)
 - Applications within Windows Guest OS
 - Electronic Archiving
 - Deep Archiving
- COOP
 - Replication
 - Data Integrity
 - Failback
 - Downtime
- Business Continuity
- Architectural Considerations
Definitions and Acronyms

- **HA = High Availability ($$)**
 - First line of defense
 - The use of redundant hardware and software technologies to provide automatic non-disruptive continuation of services in case of failure

- **DR = Disaster Recovery ($)**
 - First or second line of defense
 - Allow for restoration of specific services and data in case of failure, deletion or corruption

- **COOP = Continuation of Operations ($$$)**
 - Third line of defense
 - Remote failover of critical services to offsite datacenter in case of disaster
Introduction

- Too many data centers have unstable Microsoft environments because High Availability and redundancy was never architected prior to their server farm build-out.

- Many companies are unaware of potential faults and lack of redundancy within their own server environment until something happens.

- High Availability and redundancy is never a one-size-fits-all solution.

 - A major undertaking would be required to experience complete high availability in a physical datacenter. A total automation of server hardware, data availability and application availability would be required.

 - Tiers must be established based on criticality of network service to see any ROI.
Introduction

A sample architecture for a highly reliable physical datacenter may include the following components:

- Microsoft clustering for core applications like Exchange and SQL
- Load balanced front-end servers like Outlook Web Access (OWA) and Sharepoint web servers
- SAN software to support snapshots and/or cloning
- SAN agents that integrate with Microsoft back-end services
- Cluster aware agents that support database applications like SQL and Exchange
- Cold standby servers for all other applications that cannot be load balanced or clustered
- Strict maintenance and patch management for all redundant servers to ensure successful automated failover
Introduction

- More resources would be required for a redundant datacenter in a DR or COOP scenario. In addition to the previous items, the following would be needed for a redundant remote datacenter for critical services:
 - Duplicate server hardware
 - Maintain patch management on servers located at DR site
 - Expensive remote replication or mirroring software either host-based or SAN-based
 - For SAN-based data replication, a Fibre Channel to Ethernet bridge (FCIP) is required to transfer storage traffic over the WAN link
 - Expensive and complicated geographic clustering technology to fail-over critical applications to DR site
- In addition to the major requirements stated above, the equipment can consume significant resources like rack space, power, server hardware, and cabling
- Virtualization encapsulates your server infrastructure to reduce costs and provide new methods for performing HA, COOP and DR
HA Layers: Hardware

- Hardware is the most common form of HA that we take for granted in our enterprise equipment. It is the first line of defense

- Server Hardware
 - RAID
 - Dual power
 - Dual NICs
 - Redundant fans
 - Dual HBAs

- SAN Hardware
 - Global hot spares
 - Multiple data paths
 - Redundant storage processors
 - RAID
 - Redundant SAN fabrics
 - Multiple HBAs

- Network
 - NIC teaming
 - Load balancing
 - Redundant switches
HA Layers: Virtual Infrastructure 3

- Encapsulates all guest operating systems with additional HA not otherwise obtainable in a non-virtualized datacenter. High SLAs, minimal downtime regardless of the network service.
- VMotion provides guest OS level redundancy by moving running VMs between ESX hosts. It requires manual operation if not combined with VMware DRS.
- VMware DRS (Distributed Resource Scheduler) will automatically migrate a running VM with VMotion if CPU and/or memory thresholds are reached.
- VMware HA allows for automated failover in case of VMware ESX host failure. It provides N-to-N failover capabilities for a cluster.
- Snapshots – Allow snapshot management for virtual machines that can either be manually triggered or scripted. This allows for easy retrieval of previously known good VM configurations.
HA Layers: Application Level HA

- Since VMware HA technologies does not have insight into the guest OS, the above problems will go unnoticed without the addition of Guest OS HA software.

- VirtualCenter does not accommodate the following problems in a Windows guest operating system:
 - Operating system failures
 - Bad patches
 - Bad driver upgrades
 - Viruses and spyware
 - Application faults
 - Data corruption
HA Layers: Application Level HA

- If additional application protection is required, there are built-in solutions in the Enterprise Edition of Windows and 3rd party vendors.
- All application HA solutions must meet the compatibility requirements of Windows. Some popular solutions are:
 - Clustering Technologies (Multiple nodes on shared disks):
 - Microsoft Cluster Services
 - Veritas Cluster Server
 - NSI GeoCluster
 - EMC Autostart
 - Load Balancing (Front end network services):
 - Windows NLB
 - BigIP
 - Host Based Replication (Hot standby):
 - NeverFail
 - EMC Replistor
DR Layers

- DR is your insurance for situations like flood, fire, earthquake and contaminated buildings.
- Occurs less than 1% of the time.
- Tiers of services should be set to establish lowest cost possible for a suite of DR solutions.
- Consistency between all VMs is key to usable data.
- DR solutions measured in RPO and RTO.
DR Layers

- DR solutions available on SAN, VM and Windows OS/Application layers
 - Multiple layers are required for a complete DR solution

- To restore one or more VMs you must use a technology that utilizes the virtual layer

- To restore application objects or files you must use backup software that recognizes the Windows guest OS
 - VMware Consolidated Backup on a proxy server will mount virtual disks to separate backup server
COOP

- Continuity of Operations allows for continuation of network services during the time of disaster
 - It usually represents another datacenter that is triggered with a series of steps for manual failover
 - Only critical services are typically replicated to lower overall costs associated with bandwidth and software
- Because each guest OS is represented by a series of files on the SAN, entire sets of VMs can easily be replicated by technologies within the virtual layer or SAN replication
- Traditional geographic clustering technologies can also be used within the Windows guest OS for a more automated failover
VMware HA Layers

- A – ESX Host Failure
- B – VM Failure
- C – Guest OS application failure
- D – VMFS3 or LUN Corruption
- E – Clustered Application Failure
Summary of HA/DR/COOP Options

- HA/DRS
- Vmotion
- ESXReplicator

- NeverFail
- VCS
- DoubleTake
- AutoStart

- Replistor
- VVR
- VCB

- ESXRanger
 - Snapshots
 - Clones

- HA/DRS
 - Vmotion
 - ESXReplicator

- MSCS
- NLB
- NeverFail
- VCS
 - DoubleTake
 - AutoStart

- Site A
 - Application
 - Operating System
 - Hardware

- ESXReplicator
 - SAN Replication

- Site B
 - Application
 - Operating System
 - Hardware
Architectural Considerations: Virtual Disk Layout

- VMFS3 Volumes
 - Keep the size of your virtual disks to a minimum.
 - More fragmentation
 - Longer to backup / restore
 - Limited portability
 - You can always expand later.
 - Downtime required with native ESX commands
 - No downtime with products like Veritas VVM or MS Dynamic Disk
 - Keep the number of disks per LUN/RAID Group to a minimum. This will affect performance and flexibility to perform SAN replication
 - Position VMs so clustered and NLB nodes are on separate ESX hosts
 - DRS and HA should not affect positioning of clustered and NLB nodes
 - DRS has anti-affinity rules to prevent cluster and NLB nodes from running on the same host
 - If Microsoft Clustering will be used, architect your SAN storage with raw LUNs for shared storage and use raw disk mappings (RDM)
Architectural Considerations: Virtual Networking

- Always purchase the most Ethernet ports that you can afford
 - VI3 has a limit of 8 physical ports
 - Use port groups if you have a limited amount of ports or your server has limited expandability
 - If limited expandability, consider 4-port Intel Pro/1000 adapters

- Two or more ports should be teamed or load balanced to provide redundancy for critical virtual switches
 - Assign ports across separate physical adapters if possible
 - Only if they’re the same type of adapter

- Service console only requires one port unless you are performing backups from the service console
 - You may wish to dedicate two ports if service console is considered critical

- Having a separate port for VMotion will guarantee the best performance
Architectural Considerations: Microsoft Windows

- If you are performing hot backups or snapshots, make sure they are consistent
 - VMware snapshots are not application aware
 - Inconsistent VMs will either not function or potentially destroy your Active Directory environment
 - Domain controllers
 - Live Communications Server
 - Exchange Server
 - SQL Server and any connected database application server
- Microsoft clustering is a good choice for application-level HA but storage must be configured to support clustering (RDMs)
- If snapshots or mirroring is used on the SAN, an application agent must reside within Windows guest OS to maintain data consistency
Summary of HA and COOP Options

<table>
<thead>
<tr>
<th>Technology</th>
<th>Type</th>
<th>Scope</th>
<th>Applications</th>
<th>Application Aware</th>
<th>Data consistency (When running)</th>
<th>Async/Sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>HA</td>
<td>Broad</td>
<td>All</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>VMware HA</td>
<td>HA</td>
<td>Broad</td>
<td>All</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>VMware DRS</td>
<td>HA</td>
<td>Broad</td>
<td>All</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>VMware Vmotion</td>
<td>HA</td>
<td>Broad</td>
<td>All</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Vizioncore ESXRanger</td>
<td>DR</td>
<td>Broad</td>
<td>All</td>
<td>No</td>
<td>No</td>
<td>Async</td>
</tr>
<tr>
<td>Vizioncore ESXReplicator</td>
<td>DR / COOP</td>
<td>Broad</td>
<td>All</td>
<td>No</td>
<td>No</td>
<td>Async</td>
</tr>
<tr>
<td>VMware Consolidated Backup</td>
<td>DR</td>
<td>Broad</td>
<td>Depends</td>
<td>Yes</td>
<td>Yes</td>
<td>Async</td>
</tr>
<tr>
<td>Microsoft Clustering</td>
<td>HA</td>
<td>Focused</td>
<td>Cluster aware apps</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Microsoft WinNLB</td>
<td>HA</td>
<td>Focused</td>
<td>NLB compatible apps</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Veritas VCS</td>
<td>HA / COOP</td>
<td>Focused</td>
<td>Compatible Apps</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Veritas VVR</td>
<td>HA</td>
<td>Focused</td>
<td>Compatible Apps</td>
<td>No</td>
<td>Yes</td>
<td>Async</td>
</tr>
<tr>
<td>NSI Doubletake</td>
<td>HA / COOP</td>
<td>Focused</td>
<td>Compatible Apps</td>
<td>Yes</td>
<td>Yes</td>
<td>Async</td>
</tr>
<tr>
<td>EMC Autostart</td>
<td>HA / COOP</td>
<td>Focused</td>
<td>Compatible Apps</td>
<td>Yes</td>
<td>Yes</td>
<td>Async</td>
</tr>
<tr>
<td>EMC Replistor</td>
<td>HA / COOP</td>
<td>Focused</td>
<td>Compatible Apps</td>
<td>Yes/No</td>
<td>Yes</td>
<td>Async</td>
</tr>
<tr>
<td>SAN based replication</td>
<td>DR / COOP</td>
<td>Broad</td>
<td>All</td>
<td>Yes/No</td>
<td>Yes</td>
<td>Async/Sync</td>
</tr>
<tr>
<td>VMware snapshots</td>
<td>DR</td>
<td>Broad</td>
<td>All</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>SAN snapshots</td>
<td>DR</td>
<td>Broad</td>
<td>All</td>
<td>Yes/No</td>
<td>Yes</td>
<td>NA</td>
</tr>
</tbody>
</table>
Architectural Considerations: Resource Pools

- Group VMs into resource pools that represent AD services
- VMware DRS will allocate VMs to appropriate ESX host to meet resource group requirements
- This feature will optimize your Windows AD environment by giving resources where it matters the most
- All critical VMs should belong to resource pools. Non-critical VMs will not be guaranteed resources
Lessons Learned

- HA, DR and COOP will protect you from unplanned events but preventing operator errors can also help with unplanned downtime and potential corruption.

Lessons Learned:

- Never extend production VMFS volumes
- Always zone your fabric
 - This is not necessary for the operation of ESX servers, but will be an issue if Windows servers are SAN-attached to the same fabric.
 - This is especially important when installing a Windows server connected to the same fabric(s), because it polls all storage that it sees and will corrupt anything it has access to.
- Never attach a virtual disk file to another VM that’s not the original owner of that disk
 - VMware 3.0 uses series of flat files, delta files and snapshot disks to maintain a full logical virtual disk. Any modification to the wrong disk will render your virtual disk file set unusable.
- Revert to snapshot function in VirtualCenter does not have a confirmation dialog box.
Please remember to complete your **session evaluation form** and return it to the room monitors as you exit the session.

The presentation for this session can be downloaded at http://www.vmware.com/vmtn/vmworld/sessions/

Enter the following to download (case-sensitive):

Username: cbv_rep
Password: cbvfor9v9r