

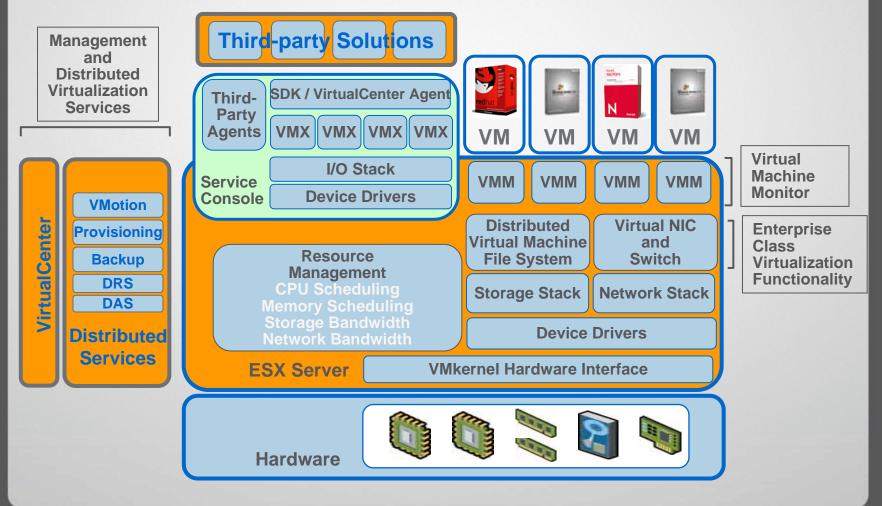
VMware and CPU Virtualization Technology

Jack Lo Sr. Director, R&D

This presentation may contain VMware confidential information.

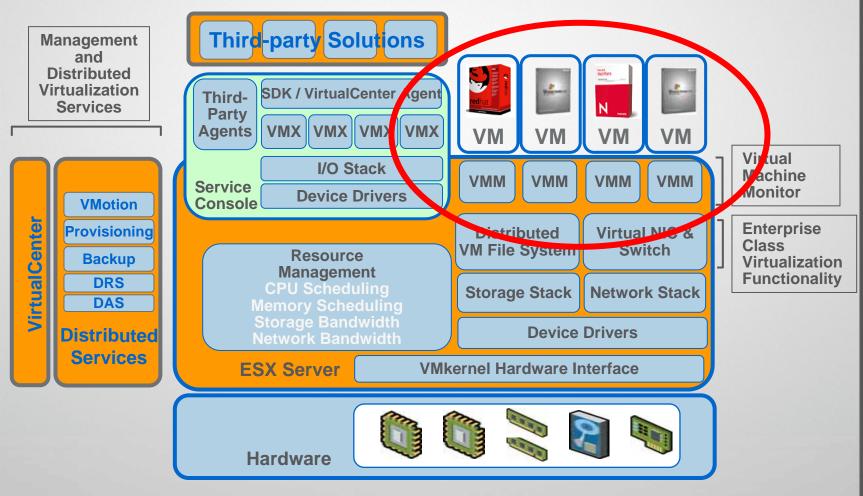
Copyright © 2005 VMware, Inc. All rights reserved. All other marks and names mentioned herein may be trademarks of their respective companies.

Overview


- Emerging technologies that impact CPU virtualization
 - Hardware assist (VT-x/Pacifica)
 - 64-bit computing
 - OS assist (paravirtualization)
- Today's talk:
 - Share our perspective on emerging technologies

Agenda

- CPU virtualization technology overview
 - Virtualizing the x86 architecture
- Trend No. 1: Hardware assist
 - VT-x and Pacifica
- Trend No. 2: 64-bit computing
 - Benefits of 64-bit architecture
 - 64-bit guest support
- Trend No. 3: OS assist
 - VMware and paravirtualization



Full Virtualization Software Stack

Today's Focus

Virtualization SW Terminology

Application Operating System	Application Operating System	Application Operating System		
VMM	VMM	VMM	Enhanced	
Base Functionality (e.g. scheduling)				
Hypervisor				

- Virtual Machine Monitor (VMM)
 - SW component that implements virtual machine hardware abstraction
 - Responsible for running the guest OS
- Hypervisor
 - Software responsible for hosting and managing virtual machines
 - Run directly on the hardware
 - Functionality varies greatly with architecture and implementation

CPU Virtualization

- Three components to classical virtualization techniques
- Many virtualization technologies focus on handling privileged instructions

	Privileged instruction virtualization	De-privileging or ring compression to handle privileged instructions
and the second s	Memory virtualization	Memory partitioning and allocation of physical memory
	Device and I/O virtualization	Routing I/O requests between virtual devices and physical hardware

Handling Privileged Instructions

In traditional systems **Ring 3** Apps OS runs in privileged mode **Guest OS** Ring 0 OS "owns" the hardware Application code has less privilege VMM needs highest privilege level Apps **Ring 3** for isolation and performance **Guest OS** Traditional VMM relies on "ring" VMM Ring 0 compression" or "de-privileging" Run privileged guest OS code at user-level Privileged instructions trap, and emulated by VMM

Virtualizing x86 Architecture

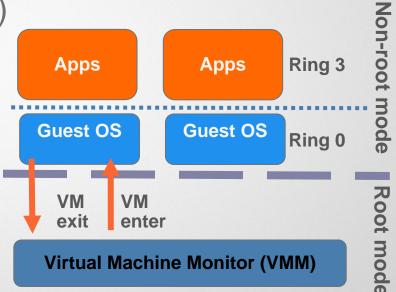
- De-privileging not possible with x86!
 - Some privileged instructions have different semantics at user-level: "non-virtualizable instructions"
- VMware uses direct execution and binary translation (BT)
 - BT for handling privileged code
 - Direct execution of user-level code for performance
 - Any unmodified x86 OS can run in virtual machine

Protecting the VMM

- Need to protect VMM and ensure isolation
 - Protect virtual machines from each other
 - Protect VMM from virtual machines
- VMware relies on segmentation hardware to protect the VMM
 - VMM lives at top of guest address space
 - Segment limit checks catch writes to VMM area

Agenda

- CPU virtualization technology overview
 - Virtualizing the x86 architecture
- Trend No. 1: Hardware assist
- Trend No. 2: 64-bit computing
- Trend No. 3: OS assist


Trend No. 1: Hardware Assist

- CPU vendors are embracing virtualization
 - Intel Virtualization Technology (VT-x)
 - AMD Pacifica
- These CPU technologies are a series of enhancements to aid virtualization SW
 - Initially focused on handling non-virtualizable instructions
 - Use a trap-and-emulate model
 - Alternative to using binary translation
- But hardware assist does not eliminate need for VMware technology

VMworldzoos virtualizenow

VT-x/Pacifica Overview

- Key feature is new CPU execution mode (root mode)
 - VMM executes in root mode
 - Allows x86 virtualization without binary translation or paravirtualization
 - Guest state stored in Virtual Machine Control Structures (VT-x) or Virtual Machine Control Block (Pacifica)

VMworldzoos virtualizenow

Limitations of Hardware Assist

- Initial VT-x/Pacifica hardware does not include all components of CPU virtualization solution
- VT-x requires small emulator for real mode code
- Memory virtualization support lacking
 - Not in VT-x; implementation-dependent for Pacifica
 - Memory virtualization is key to performance!
- No device virtualization support

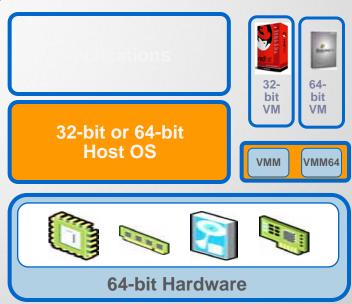
	Hardware Assist
Privileged instructions	Yes
Memory virtualization	No
Device and I/O virtualization	No

Future of Hardware Assist

- CPU vendors will add more hardware capabilities in future
 - Memory virtualization (Nested paging, EPT)
- VMware software will evolve to incorporate support for these new technologies
 - Adopt technologies as they enable new capabilities

		Hardware Solution
Kum	Privileged instructions	VT-x, Pacifica
	Memory virtualization	Extended Page Tables/Nested Paging
	Devices and I/O	Intelligent Devices

Trend No. 2: 64-bit Computing


- Progression of the x86 architecture
 - 16-bit: 8086/8088 (1978)
 - 32-bit: 80386 (1985)
 - 64-bit: x86-64 (2003): a.k.a. AMD64, x64
- x86-64 architecture brings 64-bit computing to industry-standard systems
 - Provides compatibility mode to run 32-bit x86 applications
 - Extensions to x86 architecture

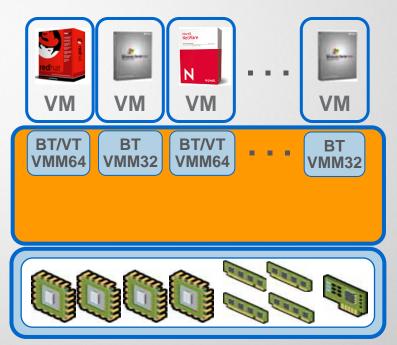
64-bit Transition Has Already Begun

- Apps exhausting limits of 32-bit address space
 - Consuming 1 bit of address space / year
 - Databases, Java app servers, other threaded applications
- Most new CPUs are 64-bit enabled
 - AMD64, EM64T
- Major OSes have been ported
 - Windows, Linux, Solaris 10, etc.
- Applications are being ported
 - Databases, app servers, development tools, games, etc.

Virtualization And x86-64

- Potential questions about 64-bit transition
 - Do my apps run in 64-bit OS?
 - Have drivers been ported?
 - Are the 64-bit OSes robust?
- The solution: virtualization!
 - Great aid for 64-bit transition
 - Easy way to evaluate new OSes
 - Can run 64-bit guest OSes on 32-bit host OS on 64-bit hardware)!

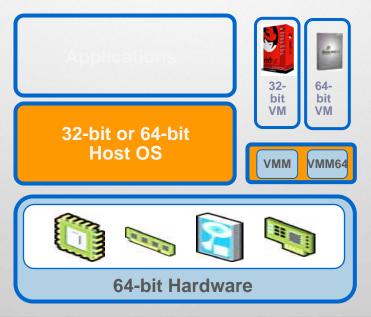
Challenges of Virtualizing x86-64


- Initial AMD64 architecture did not include segmentation in 64-bit mode
 - Segmentation also missing from EM64T

How do we protect the VMM?

- 64-bit guest support requires additional hardware assistance
 - Segment limit checks available in 64-bit mode on newer AMD processors
 - VT-x can be used to protect the VMM on EM64T
 - Requires trap-and-emulate approach instead of BT

Flexible VMM Architecture


- Flexible "multi-mode" VMM architecture
 - Separate VMM per virtual machine
 - 32-bit: BT VMM
 - 64-bit: BT or VT/Pacifica
 VMM depending on hardware
- Select mode that achieves best workloadspecific performance

 Same VMM architecture for ESX Server, GSX Server, Workstation and ACE

64-bit Guests And WS 5.5

- Workstation 5.5 enables 64-bit guests
 - Currently in beta
- Simultaneously run 32-bit and 64-bit guests
- Runs on 32-bit and 64-bit host OSes

Requirements For 64-bit Guests

- Newer hardware required for 64-bit guest support
 - AMD Opteron Rev. E or later
 - AMD Athlon64 Rev. D or later
 - Intel VT-enabled processor
- How to determine that you have a 64-bit capable system?
 - Workstation 5.5 will automatically check to see if your CPU meets the requirements
 - CPU check utility also available for download on WS5.5 beta web page
 - http://www.vmware.com/products/beta/ws/

Trend No. 3: OS Assist

- Three alternatives for handling non-virtualizable instructions
 - Binary translation
 - Hardware assist
 - OS assist or paravirtualization

	Binary Translation	Hardware Assist	Para- virtualization
Compatibility	Excellent	Excellent	
Performance	Good	Average	
VMM sophistication	High	Average	

Paravirtualization

- Paravirtualization can address same problem as hardware assist
 - Modify the guest OS to remove non-virtualizable instructions
 - Export a simpler architecture to OS
 - Cannot support unmodified OSes (e.g. Windows 2000/XP)
 - Paravirtualization not limited to CPU virtualization
 - Higher performance possible
 - Relatively easy to add paravirtualization support: very difficult to add binary translation

	Binary Translation	Hardware Assist	Para- virtualization
Compatibility	Excellent	Excellent	Poor
Performance	Good	Average	Excellent
VMM sophistication	High	Average	Average

Paravirtualization Challenges

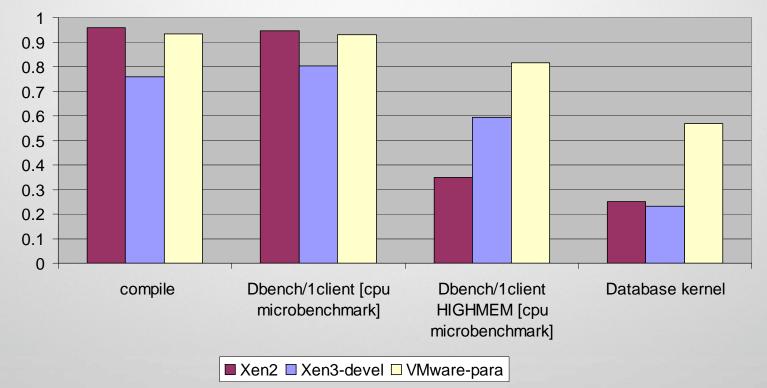
- XenoLinux paravirtualization approach unsuitable for enterprise use
 - Relies on separate kernel for native and in virtual machine
 - Guest OS and hypervisor tightly coupled
 - Tight coupling inhibits compatibility
 - Changes to the guest OS are invasive
 - Inhibits maintainability and supportability
 - Guest kernel must be recompiled when hypervisor is updated
- How can we deliver paravirtualization for enterprise customers?

VMworldzoos virtualize^{now}

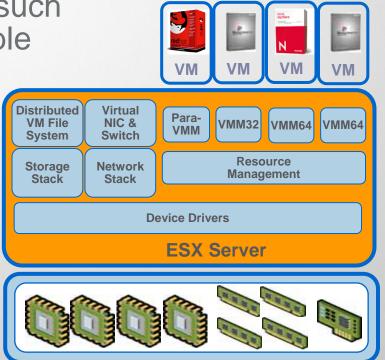
VMI Paravirtualization API

- VMware proposal: Virtual machine Interface API
 - VMI provides maintainability & stability
 - API supports low-level and higher-level interfaces
 - Allows same kernel to run natively and in a paravirtualized virtual machine: "transparent paravirtualization"
 - Allows for replacement of hypervisors without a guest recompile
 - Preserve key virtualization functionality: page sharing, VMotion, etc.
- We are gathering feedback on the API from many kernel developers and OSVs
 - http://www.vmware.com/vmi
 - http://www.vmware.com/standards/hypercalls.html

VMI Paravirtualization


- VMI approach to paravirtualization improves compatibility
- API need not compromise performance compared to invasive paravirtualization

		Hardware Assist	Para- virtualization
Compatibility	Excellent	Excellen	Good
Performance	Good	Average	Excellent
VMM sophistication	High	Average	Average


VMware Paravirtualization Performance

Performance Relative to Native Bigger is Better

VMware And Paravirtualization

- VMware will support paravirtualized Linux OSes
 - Another guest type when such OS's commercially available
- Flexible architecture
 - Use most efficient technique for the guest OS type
 - BT, VT/Pacifica, or paravirtualization

VMworldzoos virtualizenow

Summary

- 64-bit transition happening now
 - Virtualization can assist with transition
 - 64-bit guests supported in WS5.5
- VMware provides flexible architecture to support emerging virtualization technologies
 - Multi-mode VMM utilizes binary translation, hardware assist and paravirtualization
 - Select best operating mode for the workload
- VMware will support paravirtualized guests as they appear in enterprise distributions
 - VMI offers superior maintainability/flexibility
 - Performs as well as invasive paravirtualization

PAC346 VMware and CPU Virtualization Technology

Jack Lo Sr. Director, R&D

Backup slides

Performance of Binary Translation

- BT provides many performance optimization opportunities
 - Fault elimination
 - Avoid costs of repeated virtual machine exits
 - Binary translator identifies faulting instructions and replaces them with special translations
 - Jump directly to appropriate handlers without an expensive fault
 - Guest and VMM share an address space: reduces context switch costs