
2

Abstract
A pseudo-random number generator (PRNG) is a deterministic
algorithm that produces numbers whose distribution is
indistinguishable from uniform. A PRNG usually involves an
internal state from which a cryptographic function outputs
random-looking numbers. In 2005, Barak and Halevi proposed
a formal security model for PRNGs with input, which involve an
additional (potentially biased) external random input source that is
used to refresh the internal state. In this work we extend the Barak-
Halevi model with a stronger security property capturing how the
PRNG should accumulate the entropy of the input source into the
internal state after state compromise, even with a low-entropy
input source—contrary to the Barak-Halevi model, which requires
a high-entropy input source. More precisely, our new robustness
property states that a good PRNG should be able to eventually
recover from compromise even if the entropy is injected into the
system at a very slow pace. This expresses the real-life expected
behavior of existing PRNG designs.

We show that neither the model nor the specific PRNG construction
proposed by Barak and Halevi meets our robustness property,
despite meeting their weaker robustness notion. On the practical
side, we discuss the Linux /dev/random and /dev/urandom
PRNGs and show attacks proving that they are not robust according
to our definition, due to vulnerabilities in their entropy estimator
and their internal mixing function.

Finally, we propose a simple PRNG construction that is provably
robust in our new and stronger adversarial model. We therefore
recommend the use of this construction whenever a PRNG with
input is used for cryptography.

Keywords: randomness, entropy, security models, /dev/random

1. Introduction
Pseudo-Random Number Generators. Generating random numbers
is an essential task in cryptography. Random numbers are necessary
not only for generating cryptographic keys, but also in several steps
of cryptographic algorithms or protocols (e.g., initialization vectors
for symmetric encryption, password generation, nonce generation,
etc.). Cryptography practitioners usually assume that parties have
access to perfect randomness. However, quite often this assumption
is not realizable in practice, and random bits in protocols are generated
by a pseudo-random number generator (PRNG). When this is done,
the security of the scheme depends on the quality of the (pseudo-)
randomness generated.

The lack of assurance about the generated random numbers can
cause serious damage, and vulnerabilities can be exploited by
attackers. One striking example is a failure in the Debian Linux
distribution [4] that occurred when commented code in the
OpenSSL PRNG with input led to insufficient entropy gathering
and then to concrete attacks on the TLS and SSH protocols. More
recently, Lenstra, Hughes, Augier, Bos, Kleinjung, and Wachter [16]
showed that a nonnegligible percentage of RSA keys share prime
factors. Heninger, Durumeric, Wustrow, and Halderman [10]
presented an analysis of the behavior of Linux PRNGs that explains
the generation of low-entropy keys when these keys are generated
at boot time. Besides key generation cases, several works
demonstrated that if nonces for the DSS signature algorithm
are generated with a weak PRNG, then the secret key can be
quickly recovered after a few key signatures are seen (see [17]
and references therein). This illustrates the need for precise
evaluation of PRNGs based on clear security requirements.

A user who has access to a truly random, possibly short, bit-string
can use a deterministic (or cryptographic) PRNG to expand this short
seed into a longer sequence whose distribution is indistinguishable
from the uniform distribution to a computationally bounded
adversary (which does not know the seed). However, in many
situations, it is unrealistic to assume that users have access to
secret and perfect randomness. In a PRNG with input, one only
assumes that users can store a secret internal state and have
access to a (potentially biased) random source to refresh the
internal state.

In spite of being widely deployed in practice, PRNGs with input
were not formalized until 2005, by Barak and Halevi [1]. They
proposed a security notion, called robustness, to capture the fact
that the bits generated should look random to an observer with
(partial) knowledge of the internal state and (partial) control of
the entropy source. Combining theoretical and practical analysis
of PRNGs with input, this paper presents an extension of the
Barak-Halevi security model and analyzes the Linux /dev/random
and /dev/urandom PRNGs.

Security Models. Descriptions of PRNGs with input are given
in various standards [13, 11, 8]. They identify the following core
components: the entropy source, which is the source of randomness
used by the generator to update an internal state, which consists
of all the parameters, variables, and other stored values that the
PRNG uses for its operations.

Analysis of the Linux Pseudo-Random
Number Generators
Yevgeniy Dodis	 David Pointcheval	 Sylvain Ruhault	 Damien Vergnaud	 Daniel Wichs
New York University	 DI/ENS, ENS-CNRS-INRIA	 Oppida, France	 DI/ENS, ENS-CNRS-INRIA	 Northeastern University
dodis@cs.nyu.edu	 david.pointcheval@ens.fr	 ruhault@di.ens.fr	 vergnaud@diens.fr	 wichs@ccs.neu.edu

Analysis of the Linux Pseudo-Random Number Generators

 3

behavior of a PRNG after a state compromise, where it is expected
that the PRNG quickly recovers enough entropy, whatever the
quality of the input.

On the practical side, we give a precise assessment of the two
Linux PRNGs, /dev/random and /dev/urandom. We prove
that these PRNGs are not robust and do not accumulate entropy
properly, due to the behavior of their entropy estimator and their
internal mixing function. We also analyze the PRNG with input
proposed by Barak and Halevi [1]. This scheme was proven robust
in [1], but we prove that it does not generically satisfy our expected
property of entropy accumulation. On the positive side, we propose
a PRNG construction that is robust in the standard model and in
our new stronger adversarial model.

In this survey we give a high-level overview of our findings, leaving
many lower-level details (including most proofs) to the conference
version of this paper [7].

2. Preliminaries
Probabilities. When X is a distribution, or a random variable
following this distribution, we denote when x is sampled
according to X. The notation says that X is assigned the
value of the variable Y , and that X is a random variable with
a distribution equal to that of Y. For a variable X and a set S
(e.g., for some integer m), the notation denotes
both assigning X a value uniformly chosen from S and letting
X be a uniform random variable over S. The uniform distribution

over n bits is denoted by Un.

Entropy. For a discrete distribution X over a set S we denote
its min-entropy by

where is the support of the distribution X.

Game Playing Framework. For our security definitions and proofs we
use the code-based game playing framework of [3]. A game GAME
has an initialize procedure, procedures to respond to adversary
oracle queries, and a finalize procedure. A game GAME is executed
with an adversary A as follows.

First, initialize executes, and its outputs are the inputs to A. Then
A executes, its oracle queries being answered by the corresponding
procedures of GAME. When A terminates, its output becomes the
input to the finalize procedure. The output of the latter is called the
output of the game, and we let denote the event that
this game output takes value y.

In the next section, for all ,
denotes the output of the adversary. We let .
Our convention is that Boolean flags are assumed initialized to be
false and that the running time of the adversary A is defined as the
total running time of the game with the adversary in expectation,
including the procedures of the game.

Several desirable security properties for PRNGs with input have
been identified in [11, 13, 8, 2]. These standards consider adversaries
with various means (and combinations of them): those who have
access to the output of the generator; those who can (partially or
totally) control the source of the generator; and those who can
(partially or totally) control the internal state of the generator.
Several requirements have been defined:

•	Resilience – An adversary must not be able to predict future
PRNG outputs even if the adversary can influence the entropy
source used to initialize or refresh the internal state of the PRNG.

•	Forward security – An adversary must not be able to identify
past outputs even if the adversary can compromise the internal
state of the PRNG.

•	Backward security – An adversary must not be able to predict
future outputs even if the adversary can compromise the internal
state of the PRNG.

Desai, Hevia, and Yin [5] modeled a PRNG as an iterative algorithm
and formalized the above requirements in this context. Barak
and Halevi [1] model a PRNG with input as a pair of algorithms
(refresh, next) and define a new security property called
robustness that implies resilience, forward security, and backward
security. This property assesses the behavior of a PRNG after
compromise of its internal state and responds to the guidelines for
developing PRNGs given by Kelsey, Schneier, Wagner, and Hall [12].

Linux PRNGs. In UNIX-like operating systems, a PRNG with input
was implemented for the first time for Linux 1.3.30 in 1994. The
entropy source comes from device drivers and other sources such
as latencies between user-triggered events (keystroke, disk I/O,
mouse clicks). It is gathered into an internal state called the entropy
pool. The internal state keeps an estimate of the number of bits of
entropy in the internal state, and (pseudo-)random bits are created
from the special files /dev/random and /dev/urandom. Barak
and Halevi [1] discussed briefly the /dev/random PRNG, but
its conformity with their robustness security definition is not
formally analyzed.

The first security analysis of these PRNGs was given in 2006 by
Gutterman, Pinkas, and Reinman [9]. It was completed in 2012
by Lacharme, Röck, Strubel, and Videau [15]. Gutterman et al. [9]
presented an attack based on kernel version 2.6.10, for which a fix
was published in the following versions. Lacharme et al. [15] give
a detailed description of the operations of the PRNG and provide
a result on the entropy preservation property of the mixing
function used to refresh the internal state.

Our Contributions. On the theoretical side, we propose a new
formal security model for PRNGs with input that encompasses all
previous security notions. This new property captures how a PRNG
with input should accumulate the entropy of the input data into the
internal state, even if the former has low entropy only. This property
was not initially formalized in [1], but it expresses the real-life expected

Analysis of the Linux Pseudo-Random Number Generators

4

a procedure E, we are bound to either place some significant
restrictions (or assumptions) on D , or rely on some ad hoc and
nonstandard assumptions. Indeed, as part of this work we will
demonstrate some attacks on the entropy estimation of the Linux
PRNGs, illustrating how hard (or, perhaps, impossible) it is to design
a sound entropy estimation procedure E. Finally, we observe that
the design of E is anyway completely independent of the mathematics
of the actual refresh and next procedures, meaning that the
latter can and should be evaluated independently of the “accuracy”
of E.

Motivated by these considerations, we do not insist on any
“entropy estimation” procedure as a mandatory part of the PRNG
design, which allows us to elegantly side-step the practical and
theoretical impossibility of sound entropy estimation. Instead, we
chose to place the burden of entropy estimations on D itself, which
allows us to concentrate on the provable security of the refresh
and next procedures. In particular, in our security definition we
will not attempt to verify if D’s claims are accurate (as we said, this
appears hopeless without some kind of heuristics), but will only
require security when D is legitimate, as defined in (1). Equivalently,
we can think that the entropy estimations come from the entropy
estimation procedure E (which is now “merged” with D) but only
provide security assuming that E is correct in this estimation
(which we know is hard in practice, and motivates future work
in this direction).

However, we stress that: (a) the entropy estimate will only be
used in our security definitions, but not in any of the actual PRNG
operations (which will only use the “input part” I, returned by D);
b) we do not insist that a legitimate D can perfectly estimate the
fresh entropy of its next sample but only provide a lower bound

 that D is “comfortable” with. For example, D is free to set as
many times as it wants and, in this case, can even choose to leak
the entire to A via the leakage !2 More generally, we allow D to
inject new entropy as slowly (and maliciously!) as it wants, but will
only require security when the counter c keeping track of the current
“fresh” entropy in the system3 crosses some entropy threshold
(since otherwise D gave us “no reason” to expect any security).

3.2. Security Notions
In the literature, four security notions for a PRNG with input have
been proposed: resilience (RES) forward security (FWD), backward
security (BWD), and robustness (ROB), with the last being the
strongest notion among them. We now define the analogs of
these notions in our stronger adversarial model. Each of the
games below is parameterized by some parameter (since
which is part of the claimed PRNG security, and intuitively
measures the minimal “fresh” entropy in the system when
security is expected. In particular, minimizing the value of
corresponds to a stronger security guarantee.

All four security games (RES(), (FWD(), (BWD(), (ROB(), are
described using the game playing framework discussed earlier, and
they share the same initialize and finalize procedures in Table 1.

3. PRNG with Input: Modeling and Security
Definition 1 (PRNG with Input). A PRNG with input is a triple of
algorithm G = (setup, refresh, next) and a triple where

	 setup is a probabilistic algorithm that outputs some
public parameters seed for the generator.

	 refresh is a deterministic algorithm that, given seed ,
a state , and an input outputs a new
state

	 next is a deterministic algorithm that, given seed and
a state , outputs a pair
where , is the new state and , is the output.

	 The integer n is the state length,  is the output length,
and p is the input length of G.

Before defining our security notions, we notice that there are two
adversarial entities that we need to worry about: the adversary A ,
whose task is (intuitively) to distinguish the outputs of the PRNG
from random, and the distribution sampler D, whose task is to
produce inputs , which have high entropy collectively, but
somehow help A in breaking the security of the PRNG. In other
words, the distribution sampler models a potentially adversarial
environment (or “nature”) where our PRNG is forced to operate.
Unlike prior work, we model the distribution sampler explicitly and
believe that such modeling is one of the important technical and
conceptual contributions of our work.

3.1. Distribution Sampler
The distribution sample D is a stateful and probabilistic algorithm
which, given the current state σ, outputs a tuple , where

	 is the new state for D.

	 is the next input for the refresh algorithm.

	 is some fresh entropy estimation of I, as discussed below.

	 z is the leakage about I, given to the attacker A.

We denote by the upper bound on the number of executions
of D in our security games, and say that D is legitimate if1

	 (1)

for all where for and .

We now explain the reason for explicitly requiring D to output the
entropy estimate used in (1). Most complex PRNGs, including the
Linux PRNGs, are concerned with the situation in which the system
might enter a prolonged state during which no new entropy is
inserted in the system. Correspondingly, such PRNGs typically
include some ad hoc entropy estimation procedure E whose goal
is to block the PRNG from outputting output value until the state
has not accumulated enough entropy (for some entropy
threshold). Unfortunately, it is well-known that even
approximating the entropy of a given distribution is a
computationally hard problem [19]. This means that if
we require our PRNG G to explicitly come up with such

Analysis of the Linux Pseudo-Random Number Generators

1	 Since conditional min-entropy is defined in the worst-case manner in (1), the value
 in the bound below should not be viewed as a random variable, but rather as an

arbitrary fixing of this random variable.

2	 Jumping ahead, setting bad-refresh ()corresponds to the oracle
in the earlier modeling of [1], which is not explicitly provided in our model.

3	 Intuitively, “fresh” refers to the new entropy in the system since the last
state compromise.

 5

We can now define the corresponding security notions for PRNGs
with input. For convenience, we denote in the sequel we sometime
denote the “resources” of A, by .

Definition 2 (Security of PRNG with Input). A PRNG with input
G=(setup,refresh,next) is called -robust (resp.
resilient, forward-secure, backward-secure) if, for any adversary
A running in time at most t making at most calls to D–refresh,

 calls to next–ror/get–next and calls to get–state/set–state,
and any legitimate distribution sampler D inside the D–refresh
procedure, the advantage of A in game ROB() (resp. RES(),
FWD(), BWD()), is at most , where

	 ROB() is the unrestricted game where A is allowed to make
the above calls.

	 RES() is the unrestricted game where A makes no calls to
get–state/set–state (i.e.,).

	 FWD() is the restricted game where A makes no calls to
set–state and a single call to get–state (i.e.,), which is
the last call that A is allowed to make.

	 BWD() is the restricted game where A makes no calls to
get–state and a single call to set–state (i.e.,), which is
the first oracle call that A is allowed to make.

Intuitively,

•	Resilience protects the security of the PRNG when not
corrupted against arbitrary distribution samplers D.

•	Forward security protects past PRNG outputs if the state
S is compromised.

•	Backward security ensures that the PRNG can successfully
recover from state compromise, provided enough fresh entropy
is injected into the system.

•	Robustness ensures arbitrary combinations of resilience,
forward security, and backward security.

Hence, robustness is the strongest and the resilience is the
weakest of the above four notions. In particular, all of our
provable constructions will satisfy the robustness notion, but we
will use the weaker notions to better pinpoint some of our attacks.

3.3. Comparison to Barak-Halevi Model
Barak-Halevi Construction. We briefly recall the elegant construction
of PRNG with input attributable to Barak and Halevi [1], since it will
help us illustrate the key new elements (and some of the definitional
choices) of our new model. This construction (which we call BH)
involves a randomness extraction function and
a standard deterministic PRG . The modeling of [1]
did not have an explicit setup algorithm, and the refresh and next
algorithms are

	

	

 denotes the truncation of to the first n output bits. However,
we will also consider the “simplified BH” construction, wherein
is simply the identity function (i.e.,), since
this variant will help us illustrate our attacks better and is already
secure in a variant of the BH model that relaxes the strict requirement

As we mentioned, our overall adversary is modeled via a pair of
adversaries (A, D) where A is the actual attacker and D is a stateful
distribution sampler. We already discussed the distribution sampler
D, so we turn to the attacker A, whose goal is to guess the correct
value b picked in the initialize procedure, which also returns to A
the public value seed and initializes several important variables:
corruption flag corrupt, “fresh entropy counter” c, state S, and
sampler’s D initial state σ.4 In each of the games (RES, FWD, BWD,
ROB) A has access to the several oracles depicted in Table 2. We
briefly discuss these oracles:

proc. initialize proc. finalize (b*)

; IF b=b* RETURN 1

; ; ; ; ELSE RETURN 0

OUTPUT seed

Table 1. The initialize and finalize procedures for G=(setup,refresh,next)

proc.D – refresh proc. next – ror proc. get – next proc. get – state

IF corrupt=true, OUTPUT S

If corrupt=true,

IF OUTPUT R proc. set–state (S*)

RETURN R0

OUTPUT (, z) ELSE OUTPUT Rb

Table 2. Procedures in games RES(), FWD(), BWD(), and ROB(), for G=(setup,refresh,next)

D–refresh. This is the key procedure in which the distribution sampler
D is run, and whose output I is used to refresh the current state S.
Additionally, one adds the amount of fresh entropy to the entropy
counter c and resets the corrupt flag to false when c crosses the
threshold . The values of and the leakage z are also returned to A.
We denote by the number of times A calls D–refresh (and hence D),
and notice that by our convention (of including oracle calls into
run-time calculations) the total run-time of D is implicitly upper
bounded by the run-time of A.

next–ror/get–next. These procedures provide A calls with either the
real-or-random challenge (provided corrupt=false) or the true PRNG
output. As a small subtlety, a “premature” call to get–next before
corrupt=false resets the counter c to 0, because then A might learn
something nontrivial about the (low-entropy) state S in this case.5 We
denote by the total number of calls to next–ror and get–next.

get–state/set–state. These procedures give A the ability either to
learn the current state S or to set it to any value S*. In either case c is
reset to 0 and corrupt is set to true. We denote by the total
number of calls to get–state and set–state.

Analysis of the Linux Pseudo-Random Number Generators

4	 With a slight loss of generality, we assume that when S is random it is safe to set the
corrupt corruption flag to false.

5	 We could slightly strengthen our definition by only reducing c by bits in this case,
but we chose to go for a more conservative notion.

6

of “state pseudorandomness at all times” (while keeping the
pseudorandomness of all outputs, which is the main property
one cares about)

Attack on Simplified BH. Consider the following very simple
distribution sampler D. At any time period, it simply sets for
a fresh and random bit and also sets entropy estimate and
leakage . Clearly, D is legitimate. Hence, for any entropy
threshold , the simplified BH construction must regain security
after calls to the D–refresh procedure following a state
compromise. Now consider the following simple attacker
A attacking the backward security (and thus robustness) of the
simplified BH construction. It calls , and then makes
calls to D–refresh followed by many calls to next–ror. Let us
denote the value of the state S after j calls to D–refresh by
and let , . Then, recalling that

 and we see that ,
where are random and independent bits. In particular, at
any point of time there are only two possible values for if j is
even, then and if j is odd, then . In
other words, despite receiving random and independent bits
from D, the refresh procedure failed to accumulate more than
1 bit of entropy in the final state . In particular, after calls
to D–refresh, A can simply try both possibilities for S* and easily
distinguish real from random outputs with advantage arbitrarily
close to 1 (by making enough calls to next–ror).

This shows that the simplified BH construction is never backward
secure, despite being robust (modulo state pseudorandomness)
in the model of [1].

Attack on “Full” BH. The above attack does not immediately
extend to the full BH construction, due to the presence of the
truncated PRG . Instead, we show a less general attack for
some (rather than any) extractor Extract and PRG . For Extract,
we simply take any good extractor (possibly seeded) where

. Such an extractor exists, since we can
take any other initial extractor Extract, and simply modify it on
inputs , and simply modify it on inputs and , as above,
without much affecting its extraction properties on high-entropy
distributions I. By the same argument, we can take any good
PRG where , which means that .

With these (valid but artificial) choices of Extract and , we can
keep the same distribution sampler D and the attacker A as in the
simplified BH example. Now, however, we observe that the state S
always remains equal to , irrespective of whether is it updated with

 or , since the new state .
In other words, we have not gained even a single bit of entropy into
S, which clearly breaks backward security in this case as well.

One may wonder if we can have a less obvious attack for an Extract
and , much like in the simplified BH case. This turns out to be an
interesting and rather nontrivial question, which relates to the
randomness extraction properties (or lack of thereof) of the
“CBC-MAC” construction (considered by [6] under some idealized
assumptions about).

Instead of following this direction, below we give an almost equally
simple construction that is provably robust in the standard model,
without any idealized assumptions.

4. Provably Secure Construction
Let be a (deterministic) pseudorandom generator
where m<n. We use the notation to denote the first m bits of

. Our construction of PRNG with input has parameters n
(state length),  (output length), and p=n (sample length), and
is defined as follows:

: Output . : Given ,
current state , and a sample output: , where
all operations are over . : Given and a state

, first compute . Then output .

Notice that we are assuming each input I is in . This is without
loss of generality: we can take shorter inputs and pad them with 0s,
or take longer inputs and break them up into n-bit chunks, calling the
refresh procedure iteratively.

Theorem Let be integers. Assume that
is a deterministic -pseudorandom generator. Let
G=(setup,refresh,next) be defined as above. Then G is
a -robust PRNG with input where ,

 as long as
.

5. Analysis of the Linux PRNGs
The Linux operating system contains two PRNGs with input,
/dev/random and /dev/urandom. They are part of the kernel
and are used in the OS security services and some cryptographic
libraries. We give a precise description6 of them in our model as a
triple LINUX=(setup,refresh,next) and we prove the following theorem:

Theorem The Linux /dev/random and /dev/urandom PRNGs
are not robust.

Since the actual generator LINUX does not define any seed (i.e., the
algorithm setup always outputs Ø), as mentioned above, it cannot
achieve the notion of robustness. However, we additionally mount
concrete attacks that would work even if LINUX had used a seed.
The attacks exploit two independent weaknesses, in the entropy
estimator and the mixing functions, which would need both to be
fixed in order to expect the PRNGs to be secure.

5.1. PRNG Overview
Security Parameters. The LINUX PRNG uses the parameters n=6144,
 =80, p=96. The parameter n can be modified (but requires kernel
compilation), and the parameters  (size of the output) and p
(size of the input) are fixed. The PRNG outputs the requested
random numbers by blocks of  =80, bits and truncates the last
block if necessary.

Analysis of the Linux Pseudo-Random Number Generators

6	 All descriptions were done by source code analysis. We refer to version 3.7.8 of the
Linux kernel.

 7

Internal State. The internal state of LINUX PRNG is a triple
where bits, bits and bits. New data is
collected in which is named the input pool. Output is generated
from and which are named the output pools. When a call to
/dev/urandom is made, data is generated from the pool , and
when a call to /dev/random is made, data is generated from the
pool .

Functions refresh and next. There are two refresh functions:
refreshi that initializes the internal state and refreshc that updates
it continuously. There are two next functions: nextu /dev/urandom
and nextr for /dev/random.

Mixing Function. The PRNG uses a mixing function M to mix new
data in the input pool and to transfer data between the pools.

Entropy Estimator. The PRNG uses an entropy estimator that
estimates the entropy of new inputs and the entropy of the pools.
The PRNG uses these estimations to control the transfers between
the pools and how new input is collected. This is described in detail
in Section 5.2. The estimations are named Ei (entropy estimation of Si),
Eu (of Su), Er (of Sr).

5.2. Attacks Overview
Overview of the Attack on the Entropy Estimator. The PRNG uses
an entropy estimator on each input that continuously refreshes the
internal state of the PRNG. This estimator can be fooled in two ways.
First, it is possible to define a distribution of zero entropy that the
estimator will estimate to be of high entropy; second, it is possible
to define a distribution of arbitrary high entropy that the estimator
will estimate to be of zero entropy. This is due to the estimator
conception: As it considers the timings of the events to estimate
their entropy, regular events (but with unpredictable data) will be
estimated with zero entropy, whereas irregular events (but with
predictable data) will be estimated with high entropy. With these
distributions, an attacker can control the transfer of data between
the pools and force the generator not to use fresh inputs when
generating data.

Overview of the Attack on the Mixing Function. The PRNG uses
a mixing function M to mix new data in the input pool. It is possible
to define a distribution of arbitrary high entropy for which the mixing
function is completely counterproductive (i.e., the entropy of the
internal state does not increase whatever the size of the input is).
This is due to the conception of the mixing function and its linear
structure. With this distribution, an attacker can force the internal
state of the PRNG to contain only one bit of entropy and therefore
easily predict its output.

6. Conclusion
We have proposed a new property for PRNG with input that
captures how it should accumulate entropy into the internal state.
This property expresses the real expected behavior of a PRNG
after a state compromise, when it is expected that the PRNG
quickly recovers enough entropy, even with a low-entropy external
input. We gave a precise assessment of the Linux /dev/random
and /dev/urandom PRNGs. We proved that these PRNGs do

not achieve this property, due to the behavior of their entropy
estimator and their mixing function. As pointed out by Barak and
Halevi [1], who advise against using run-time entropy estimation,
our attacks are due to its use when data is transferred between
pools in Linux PRNGs. We therefore recommend that the functions
of a PRNG do not rely on such an estimator.

Finally, we proposed a construction that meets our new property
in the standard model. Thus, from the perspective of provable
security, our construction appears to be vastly superior to Linux
PRNGs. We therefore recommend the use of this construction
whenever a PRNG with input is used for cryptography.

7. Acknowledgments
Yevgeniy Dodis’s research was partially supported by the gift from
VMware Labs and NSF grants 1319051, 1314568, 1065288, and 1017471.
Damien Vergnaud’s research was supported in part by the French
ANR-12-JS02-0004 ROMAnTIC Project. Daniel Wichs’s research
was partially supported by NSF grant 1314722.

8. References
1	 Barak, B. and Halevi, S. A model and architecture for pseudo-

random generation with applications to /dev/random. In ACM
CCS 05 12th Conference on Computer and Communications
Security (Nov. 2005), V. Atluri, C. Meadows, and A. Juels,
Eds., ACM Press, pp. 203–212.

2	 Barker, E. and Kelsey, J. Recommendation for random number
generation using deterministic random bit generators. NIST
Special Publication 800-90A, 2012.

3	 Bellare, M. and Rogaway, P. The security of triple encryption
and a framework for code-based game-playing proofs. In
EUROCRYPT Advances in Cryptology – EUROCRYPT 2006
(May / June 2006), S. Vaudenay, Ed., vol. 4004 of LNCS
Lecture Notes in Computer Science, Springer, pp. 409–426.

4	 CVE-2008-0166. Common Vulnerabilities and Exposures, 2008.

5	 Desai, A., Hevia, A., and Yin, Y. L. A practice-oriented
treatment of pseudorandom number generators. In
EUROCRYPT Advances in Cryptology – EUROCRYPT 2002
(Apr. / May 2002), L. R. Knudsen, Ed., vol. 2332 of LNCS
Lecture Notes in Computer Science, Springer, pp. 368–383.

6	 Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., and Rabin,
T. Randomness extraction and key derivation using the CBC,
cascade and HMAC modes. In CRYPTO Advances in Cryptology –
CRYPTO 2004 (Aug. 2004), M. Franklin, Ed., vol. 3152 of LNCS
Lecture Notes in Computer Science, Springer, pp. 494–510.

7	 Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., and
Wichs, Daniel, Security analysis of pseudo-random number
generators with input: /dev/random is not robust. In ACM
Conference on Computer and Communication Security (CCS),
November 2013.

Analysis of the Linux Pseudo-Random Number Generators

8

15	 Lacharme, P., Rock, A., Strubel, V., and Videau, M. The Linux
pseudorandom number generator revisited. Cryptology ePrint
Archive, Report 2012/251, 2012.

16	 Lenstra, A. K., Hughes, J. P., Augier, M., Bos, J. W., Kleinjung, T.,
and Wachter, C. Public keys. CRYPTO Advances in Cryptology
– CRYPTO 2012 (Aug. 2012), R. Safavi-Naini and R. Canetti,
Eds., vol. 7417 LNCS Lecture Notes in Computer Science,
Springer, pp. 626–642.

17	 Nguyen, P. Q. and Shparlinski, I. The insecurity of the digital
signature algorithm with partially known nonces. Journal of
Cryptology 15, 3 (2002), 151–176.

18	 Nisan, N. and Zuckerman, D. Randomness is linear in space.
J. Comput. Syst. Sci. 52, 1 (1996), 43–52.

19	 Sahai, A. and Vadhan, S. P. A complete problem for statistical
zero knowledge. J. ACM 50, 2 (2003), 196–249.

20	 Shoup, V. A computational introduction to number theory and
algebra. Cambridge University Press, 2006.

8	 Eastlake, D., Schiller, J., and Crocker, S. RFC 4086 -
Randomness Requirements for Security, June 2005.

9	 Gutterman, Z., Pinkas, B., and Reinman, T. Analysis of the
Linux random number generator. In 2006 IEEE Symposium
on Security and Privacy (May 2006), IEEE Computer Society
Press, pp. 371–385.

10	 Heninger, N., Durumeric, Z., Wustrow, E., and Halderman,
J. A. Mining your Ps and Qs: Detection of widespread weak
keys in network devices. In Proceedings of the 21st USENIX
Security Symposium (Aug. 2012).

11	 Information technology - Security techniques - Random bit
generation. ISO/IEC18031:2011, 2011.

12	 Kelsey, J., Schneier, B., Wagner, D., and Hall, C. Cryptanalytic
attacks on pseudorandom number generators. In FSE Fast
Software Encryption – FSE’98 (Mar. 1998), S. Vaudenay, Ed.,
vol. 1372 of LNCS Lecture Notes in Computer Science,
Springer, pp. 168–188.

13	 Killmann, W. and Schindler, W. A proposal for: Functionality
classes for random number generators. AIS 20 / AIS31, 2011.

14	 Koopman, P. 32-bit cyclic redundancy codes for internet
applications. In Proceedings of the 2002 International
Conference on Dependable Systems and Networks
(Washington, DC, USA, 2002), DSN ’02, IEEE Computer
Society, pp. 459–472.

Analysis of the Linux Pseudo-Random Number Generators

	VMW-WP-TECH-JOURNAL-V2N2-CVR-INT-COMPOSITE-102-PROOF 4
	VMW-WP-TECH-JOURNAL-V2N2-CVR-INT-COMPOSITE-102-PROOF 5
	VMW-WP-TECH-JOURNAL-V2N2-CVR-INT-COMPOSITE-102-PROOF 6
	VMW-WP-TECH-JOURNAL-V2N2-CVR-INT-COMPOSITE-102-PROOF 7
	VMW-WP-TECH-JOURNAL-V2N2-CVR-INT-COMPOSITE-102-PROOF 8
	VMW-WP-TECH-JOURNAL-V2N2-CVR-INT-COMPOSITE-102-PROOF 9
	VMW-WP-TECH-JOURNAL-V2N2-CVR-INT-COMPOSITE-102-PROOF 10

